Détail de l'auteur
Auteur Torsten Mayer-Gürr |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GROOPS: A software toolkit for gravity field recovery and GNSS processing / Torsten Mayer-Gürr in Computers & geosciences, vol 155 (October 2021)
[article]
Titre : GROOPS: A software toolkit for gravity field recovery and GNSS processing Type de document : Article/Communication Auteurs : Torsten Mayer-Gürr, Auteur ; Saniya Behzadpour, Auteur ; Annette Eicker, Auteur Année de publication : 2021 Article en page(s) : n° 104864 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] C++
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] logiciel libre
[Termes IGN] orbitographie
[Termes IGN] série temporelle
[Termes IGN] traitement de données GNSSRésumé : (auteur) The Gravity Recovery Object Oriented Programming System (GROOPS) is a software toolkit written in C++ that enables the user to perform core geodetic tasks. Key features of the software include gravity field recovery from satellite and terrestrial data, the determination of satellite orbits from global navigation satellite system (GNSS) measurements, and the computation of GNSS constellations and ground station networks. Next to raw data processing, GROOPS is capable to operate on time series and spatial data to directly analyze and visualize the computed data sets. Most tasks and algorithms are (optionally) parallelized through the Message Passing Interface, thus the software enables a smooth transition from single-CPU desktop computers to large distributed computing environments for resource intensive tasks. For an easy and intuitive setup of complex workflows, GROOPS contains a graphical user interface to create and edit configuration files. The source code of the software is freely available on GitHub (https://github.com/groops-devs/groops) together with documentation, a cookbook with guided examples, and step-by-step installation instructions. Numéro de notice : A2021-948 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.cageo.2021.104864 Date de publication en ligne : 23/06/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99765
in Computers & geosciences > vol 155 (October 2021) . - n° 104864[article]Processing of GNSS constellations and ground station networks using the raw observation approach / Sebastian Strasser in Journal of geodesy, vol 93 n°7 (July 2019)
[article]
Titre : Processing of GNSS constellations and ground station networks using the raw observation approach Type de document : Article/Communication Auteurs : Sebastian Strasser, Auteur ; Torsten Mayer-Gürr, Auteur ; Norbert Zehentner, Auteur Année de publication : 2019 Article en page(s) : pp 1045 - 1057 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] antenne GNSS
[Termes IGN] constellation GNSS
[Termes IGN] données GPS
[Termes IGN] erreur systématique
[Termes IGN] étalonnage d'instrument
[Termes IGN] Global Orbitography Navigation Satellite System
[Termes IGN] horloge du satellite
[Termes IGN] orbitographie
[Termes IGN] position
[Termes IGN] repère de référence
[Termes IGN] retard ionosphèrique
[Termes IGN] station GNSS
[Termes IGN] station GPSRésumé : (auteur) This article describes the raw observation approach as implemented at Graz University of Technology to determine GNSS products like satellite orbits, clocks, and station positions. To assess the performance of the approach, 15 years (2003–2017) of observations from a network of 245 globally distributed IGS stations to the GPS constellation were processed on a daily basis using the IGS14 reference frame and antenna calibrations. The resulting products are evaluated against those determined by IGS analysis centers. Orbit fit quality relative to the IGS combination is comparable to the best-fitting solutions used for evaluation. Starting from early 2017, when the IGS switched to IGS14, the determined orbits fit better to the IGS combination than any other considered solution. Midnight discontinuities show good internal orbit consistency and no noticeable satellite block-dependency. Satellite clocks are comparable to the considered IGS analysis center solutions. Station positions differ from the IGS combination on a similar level to the solutions they were evaluated against. The temporal repeatability of station positions is slightly better than that of the IGS combination. The quality of resulting GNSS products confirms that the raw observation approach is well suited for the task of determining satellite orbits, clocks, and station positions. It provides an alternative to well-established approaches used by IGS analysis centers and simplifies the introduction of additional observables from new and modernized GNSS. Numéro de notice : A2019-358 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1223-2 Date de publication en ligne : 13/12/2018 En ligne : https://doi.org/10.1007/s00190-018-1223-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93426
in Journal of geodesy > vol 93 n°7 (July 2019) . - pp 1045 - 1057[article]Precise orbit determination based on raw GPS measurements / Norbert Zehentner in Journal of geodesy, vol 90 n° 3 (March 2016)
[article]
Titre : Precise orbit determination based on raw GPS measurements Type de document : Article/Communication Auteurs : Norbert Zehentner, Auteur ; Torsten Mayer-Gürr, Auteur Année de publication : 2016 Article en page(s) : pp 275 - 286 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données GPS
[Termes IGN] orbite basse
[Termes IGN] orbitographie
[Termes IGN] poursuite de satelliteRésumé : (auteur) Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step. Numéro de notice : A2016-247 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0872-7 En ligne : http://dx.doi.org/10.1007/s00190-015-0872-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80754
in Journal of geodesy > vol 90 n° 3 (March 2016) . - pp 275 - 286[article]