Détail de l'auteur
Auteur Feng Zhao |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest / Ran Meng in Remote sensing of environment, vol 269 (February 2022)
[article]
Titre : Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest Type de document : Article/Communication Auteurs : Ran Meng, Auteur ; Renjie Gao, Auteur ; Feng Zhao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112847 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatiale
[Termes IGN] dépérissement
[Termes IGN] forêt tempérée
[Termes IGN] image Landsat-8
[Termes IGN] insecte nuisible
[Termes IGN] mortalité
[Termes IGN] peuplement mélangé
[Termes IGN] Scolytinae
[Termes IGN] signature spectrale
[Termes IGN] surveillance forestière
[Termes IGN] xylophageRésumé : (auteur) The recent northward expansion of Southern Pine Beetle (SPB) outbreaks associated with warming winters has caused extensive tree mortality in temperate pine forests, significantly affecting forest dynamics, structure, and functioning. Spatially-explicit early warning and detection of SPB-induced tree mortality is critical for timely and sustainable forest management practices. The unique contributions of remote sensing technologies to mapping the location, extent, and severity of beetle outbreaks, as well as assisting in analyzing the potential drivers for outbreak predictions, have been well recognized. However, little is known about the performance of moderate resolution satellite multispectral imagery for early warning and detection of SPB-induced tree mortality. Thus, we conducted this study, as the first attempt, to capture the spatial-temporal patterns of SPB infestation severity at the regional scale and to understand the underlying environmental drivers in a spatially-explicit manner. First, we explored the spectral signatures of SPB-killed trees based on 30-m plot measurements and Landsat-8 imagery. Then, to improve detection accuracy for areas with low-moderate SPB infestation severity, we added spectral-temporal anomaly information in the form of a linear trend of the spectral index trajectory to a previously developed approach. The best overall accuracy increased from 84.7% to 90.1% and the best Macro F1 value increased from 0.832 to 0.900. Next, we compared the performances of spectral indices in mapping SPB infestation severity (i.e., % red stage within the 30-m grid cell). The results showed that the combination of Normalized Difference Moisture Index and Tasseled Cap Greenness had the best performance for mapping SPB infestation severity (2016: R2 = 0.754; RSME = 15.7; 2017: R2 = 0.787; RSME = 12.4). Finally, we found that climatic and landscape variables can explain the detected patterns of SPB infestation from 2014 to 2017 in our study area (R2 = 0.751; RSME = 9.67), providing valuable insights on possible predictors for early warning of SPB infestation. Specifically, in our study area, winter dew point temperature was found to be one of the most important predictors, followed by SPB infestation locations in the previous year, canopy cover of host species, elevation, and slope. In the context of continued global warming, our study not only provides a novel framework for efficient, spatially-explicit, and quantitative measurements of forest damage induced by SPB infestation over large scales, but also uncovers opportunities to predict future SPB outbreaks and take precautions against it. Numéro de notice : A2022-096 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112847 Date de publication en ligne : 15/12/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112847 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99538
in Remote sensing of environment > vol 269 (February 2022) . - n° 112847[article]Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning / Feng Zhao in Remote sensing of environment, vol 269 (February 2022)
[article]
Titre : Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning Type de document : Article/Communication Auteurs : Feng Zhao, Auteur ; Rui Sun, Auteur ; Liheng Zhong, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112822 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] carte thématique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] déboisement
[Termes IGN] image Sentinel-SAR
[Termes IGN] récolte de bois
[Termes IGN] Rondonia (Brésil)
[Termes IGN] série temporelle
[Termes IGN] surveillance forestièreRésumé : (auteur) Compared with disturbance maps produced at annual or multi-year time steps, monthly mapping of forest harvesting can provide more temporal details needed for studying the socio-economic drivers (e.g., differentiating salvage logging and slash-and-burn from other timber harvesting) of harvesting and characterizing the associated intra-annual carbon and hydrological dynamics. Frequent cloud cover limits the application of optical remote sensing in timely mapping of forest changes. The freely available Sentinel-1 synthetic aperture radar (SAR) sensor provides an unprecedented opportunity to achieve more frequent mapping of forest harvesting than ever before (i.e., at monthly interval). The unique landscape pattern of forest harvesting from Sentienl-1 data (i.e., how a harvested patch contrasts to surrounding intact forests) holds critical information for harvesting mapping but have not been fully explored. In this study, we propose a deep learning-based (i.e., U-Net) approach using the landscape pattern from Sentinel-1 data to produce monthly maps of forest harvesting in two deforestation hotspots - California, USA and Rondônia, Brazil – for as long as three years. Our results show that (1) our proposed approach is reliable (mean F1 scores (the geometric mean of user's and producer's accuracies) 0.74–0.78; mean IoU (the area of intersection over union between the prediction part and target part) 0.59–0.65) for monthly forest harvesting mapping with Sentinel-1 data, outperforming the traditional object-based approach (0.38–0.43 in IoU). The varying harvesting pattern from Sentinel-1 data can be recognized by the U-Net bottleneck block as whole entities, which is the key advantage of our proposed approach; (2) multi-temporal SAR filtering is helpful for improving the accuracies of our proposed approach (increased F1 and IoU for 0.04 and 0.06, respectively); (3) our proposed model can be trained using samples collected during a particular time period over one location and be fine-tuned using sparse local samples from a new area to achieve optimal performance, and hence can greatly reduce training data collection effort when applied to new study sites; (4) forest harvesting maps produced using our approach revealed substantial variations in monthly harvesting activities: in Rondônia, most of the forest harvest occurred in July/August (the dry season) and about 14% of the dry season harvesting were followed by fires (i.e., slash-and-burn); in California, the rates of forest harvesting were relatively stable, but abnormally high values could occur due to salvage logging after big fires. Our novel approach for mapping forest harvesting at monthly interval represents an important step towards timely monitoring of forest harvesting and assisting stakeholders in developing sustainable strategy of forest management, especially for regions with frequent cloud cover. Numéro de notice : A2022-078 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112822 Date de publication en ligne : 08/12/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112822 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99745
in Remote sensing of environment > vol 269 (February 2022) . - n° 112822[article]A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection / Feng Zhao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection Type de document : Article/Communication Auteurs : Feng Zhao, Auteur ; Jordi J. Mallorquí, Auteur Année de publication : 2019 Article en page(s) : pp 8350 - 8361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] amplitude
[Termes IGN] Barcelone
[Termes IGN] classification pixellaire
[Termes IGN] cohérence temporelle
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] interferométrie différentielle
[Termes IGN] mesurage de phaseRésumé : (auteur) Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification. Numéro de notice : A2019-593 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2920536 Date de publication en ligne : 16/07/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2920536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94585
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8350 - 8361[article]Grid pattern recognition in road networks using the C4.5 algorithm / Jing Tian in Cartography and Geographic Information Science, Vol 43 n° 3 (June 2016)
[article]
Titre : Grid pattern recognition in road networks using the C4.5 algorithm Type de document : Article/Communication Auteurs : Jing Tian, Auteur ; Zihan Song, Auteur ; Fei Gao, Auteur ; Feng Zhao, Auteur Année de publication : 2016 Article en page(s) : pp 266 - 282 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification dirigée
[Termes IGN] exploration de données géographiques
[Termes IGN] grille
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau routierRésumé : (Auteur) Pattern recognition in road networks can be used for different applications, including spatiotemporal data mining, automated map generalization, data matching of different levels of detail, and other important research topics. Grid patterns are a common pattern type. This paper proposes and implements a method for grid pattern recognition based on the idea of mesh classification through a supervised learning process. To train the classifier, training datasets are selected from worldwide city samples with different cultural, historical, and geographical environments. Meshes are subsequently labeled as composing or noncomposing grids by participants in an experiment, and the mesh measures are defined while accounting for the mesh’s individual characteristics and spatial context. The classifier is generated using the C4.5 algorithm. The accuracy of the classifier is evaluated using Kappa statistics and the overall rate of correctness. The average Kappa value is approximately 0.74, which corresponds to a total accuracy of 87.5%. Additionally, the rationality of the classifier is evaluated in an interpretation step. Two other existing grid pattern recognition methods were also tested on the datasets, and comparison results indicate that our approach is effective in identifying grid patterns in road networks. Numéro de notice : A2016-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15230406.2015.1062425 En ligne : https://doi.org/10.1080/15230406.2015.1062425 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80473
in Cartography and Geographic Information Science > Vol 43 n° 3 (June 2016) . - pp 266 - 282[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2016031 RAB Revue Centre de documentation En réserve L003 Disponible