Détail de l'auteur
Auteur Venkatraman Sarma |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Autonomous ortho-rectification of very high resolution imagery using SIFT and genetic algorithm / Pramod Kumar Konugurthi in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 5 (May 2016)
[article]
Titre : Autonomous ortho-rectification of very high resolution imagery using SIFT and genetic algorithm Type de document : Article/Communication Auteurs : Pramod Kumar Konugurthi, Auteur ; Raghavendra Kune, Auteur ; Ravi Nooka, Auteur ; Venkatraman Sarma, Auteur Année de publication : 2016 Article en page(s) : pp 377 - 388 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] algorithme génétique
[Termes IGN] appariement d'images
[Termes IGN] chaîne de traitement
[Termes IGN] image à très haute résolution
[Termes IGN] orthorectification
[Termes IGN] point d'appui
[Termes IGN] SIFT (algorithme)Résumé : (Auteur) Ortho-rectification of very high resolution imagery from agile platforms using Rigorous Sensor Model / Rational Functional Model is quite challenging and demands a fair amount of interactivity in Ground Control Point (GCP) identification/selection for refining the model and for final product evaluation. The paper proposes achieving complete automation in the ortho-rectification process by eliminating all the interactive components, and incorporating fault tolerance mechanisms within the model to make the process robust and reliable. The key aspects proposed in this paper are: two stage Scale Invariant Feature Transform (SIFT) based matching to obtain a large numbers of checkpoints using much coarser resolution images such as Landsat/ETM+, followed by a GA to select the right combination of minimal GCPS based on minimizing Root Mean Square Error (RMSE) and maximizing the area covered under GCPS, and finally, a decision rule based product evaluation to make the process operate in an "autonomous closed loop mode". The method is generic and has been tested on hundreds of Cartosat-1/2 images, and has achieved above 90% reliability with sub-pixel relative error of reference data. Numéro de notice : A2016-412 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.82.5.377 En ligne : http://dx.doi.org/10.14358/PERS.82.5.377 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81279
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 5 (May 2016) . - pp 377 - 388[article]