Détail de l'auteur
Auteur Xinyue Ye |
Documents disponibles écrits par cet auteur (8)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
[article]
Titre : Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1317 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] distorsion d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hauteur du bâti
[Termes IGN] image Streetview
[Termes IGN] lever tachéométrique
[Termes IGN] modèle numérique de surface
[Termes IGN] porteRésumé : (auteur) Street view imagery such as Google Street View is widely used in people’s daily lives. Many studies have been conducted to detect and map objects such as traffic signs and sidewalks for urban built-up environment analysis. While mapping objects in the horizontal dimension is common in those studies, automatic vertical measuring in large areas is underexploited. Vertical information from street view imagery can benefit a variety of studies. One notable application is estimating the lowest floor elevation, which is critical for building flood vulnerability assessment and insurance premium calculation. In this article, we explored the vertical measurement in street view imagery using the principle of tacheometric surveying. In the case study of lowest floor elevation estimation using Google Street View images, we trained a neural network (YOLO-v5) for door detection and used the fixed height of doors to measure doors’ elevation. The results suggest that the average error of estimated elevation is 0.218 m. The depthmaps of Google Street View were utilized to traverse the elevation from the roadway surface to target objects. The proposed pipeline provides a novel approach for automatic elevation estimation from street view imagery and is expected to benefit future terrain-related studies for large areas. Numéro de notice : A2022-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1981334 Date de publication en ligne : 06/10/2021 En ligne : https://doi.org/10.1080/13658816.2021.1981334 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100970
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1317 - 1342[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science / Jiaxin Du in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
[article]
Titre : GIS-KG: building a large-scale hierarchical knowledge graph for geographic information science Type de document : Article/Communication Auteurs : Jiaxin Du, Auteur ; Shaohua Wang, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 873 - 897 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] approche hiérarchique
[Termes IGN] exploration de données
[Termes IGN] ingénierie des connaissances
[Termes IGN] ontologie
[Termes IGN] recherche d'information géographique
[Termes IGN] réseau sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) An organized knowledge base can facilitate the exploration of existing knowledge and the detection of emerging topics in a domain. Knowledge about and around Geographic Information Science and its associated system technologies (GIS) is complex, extensive and emerging rapidly. Taking the challenge, we built a GIS knowledge graph (GIS-KG) by (1) merging existing GIS bodies of knowledge to create a hierarchical ontology and then (2) applying deep-learning methods to map GIS publications to the ontology. We conducted several experiments on information retrieval to evaluate the novelty and effectiveness of the GIS-KG. Results showed the robust support of GIS-KG for knowledge search of existing GIS topics and potential to explore emerging research themes. Numéro de notice : A2022-341 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2005795 Date de publication en ligne : 26/11/2021 En ligne : https://doi.org/10.1080/13658816.2021.2005795 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100515
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 873 - 897[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022051 SL Revue Centre de documentation Revues en salle Disponible Delineating and modeling activity space using geotagged social media data / Lingqian Hu in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
[article]
Titre : Delineating and modeling activity space using geotagged social media data Type de document : Article/Communication Auteurs : Lingqian Hu, Auteur ; Zhenhong Li, Auteur ; Xinyue Ye, Auteur Année de publication : 2020 Article en page(s) : pp 277 - 288 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distance
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] logement
[Termes IGN] loisir
[Termes IGN] Los Angeles
[Termes IGN] quartier
[Termes IGN] réseau social
[Termes IGN] sport
[Termes IGN] Twitter
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone urbaineRésumé : (auteur) It has become increasingly important in spatial equity studies to understand activity spaces – where people conduct regular out-of-home activities. Big data can advance the identification of activity spaces and the understanding of spatial equity. Using the Los Angeles metropolitan area for the case study, this paper employs geotagged Twitter data to delineate activity spaces with two spatial measures: first, the average distance between users’ home location and activity locations; and second, the area covered between home and activity locations. The paper also finds significant relationship between the spatial measures of activity spaces and neighborhood spatial and socioeconomic characteristics. This research enriches the literature that aims to address spatial equity in activity spaces and demonstrates the applicability of big data in urban socio-spatial research. Numéro de notice : A2020-135 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1705187 Date de publication en ligne : 10/02/2020 En ligne : https://doi.org/10.1080/15230406.2019.1705187 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94843
in Cartography and Geographic Information Science > vol 47 n° 3 (May 2020) . - pp 277 - 288[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020031 RAB Revue Centre de documentation En réserve L003 Disponible Space, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data / Zheye Wang in Cartography and Geographic Information Science, Vol 46 n° 4 (July 2019)
[article]
Titre : Space, time, and situational awareness in natural hazards: a case study of Hurricane Sandy with social media data Type de document : Article/Communication Auteurs : Zheye Wang, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 334 - 346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Information géographique
[Termes IGN] catastrophe naturelle
[Termes IGN] données localisées des bénévoles
[Termes IGN] espace-temps
[Termes IGN] gestion de crise
[Termes IGN] modèle de Markov
[Termes IGN] modélisation 3D
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] outil d'aide à la décision
[Termes IGN] réseau social
[Termes IGN] risque naturel
[Termes IGN] tempêteRésumé : (Auteur) Various methods have been developed to investigate the geospatial information, temporal component, and message content in disaster-related social media data to enrich human-centric information for situational awareness. However, few studies have simultaneously analyzed these three dimensions (i.e. space, time, and content). With an attempt to bring a space–time perspective into situational awareness, this study develops a novel approach to integrate space, time, and content dimensions in social media data and enable a space–time analysis of detailed social responses to a natural disaster. Using Markov transition probability matrix and location quotient, we analyzed the Hurricane Sandy tweets in New York City and explored how people’s conversational topics changed across space and over time. Our approach offers potential to facilitate efficient policy/decision-making and rapid response in mitigations of damages caused by natural disasters. Numéro de notice : A2019-201 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1483740 Date de publication en ligne : 18/06/2018 En ligne : https://doi.org/10.1080/15230406.2018.1483740 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92657
in Cartography and Geographic Information Science > Vol 46 n° 4 (July 2019) . - pp 334 - 346[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019041 RAB Revue Centre de documentation En réserve L003 Disponible Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
[article]
Titre : Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level Type de document : Article/Communication Auteurs : Jiang Juqin, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 228 - 242 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agrégation spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données démographiques
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] erreur systématique
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] régression géographiquement pondérée
[Termes IGN] TwitterRésumé : (Auteur) Massive social media data produced from microblog platforms provide a new data source for studying human dynamics at an unprecedented scale. Meanwhile, population bias in geotagged Twitter users is widely recognized. Understanding the demographic and socioeconomic biases of Twitter users is critical for making reliable inferences on the attitudes and behaviors of the population. However, the existing global models cannot capture the regional variations of the demographic and socioeconomic biases. To bridge the gap, we modeled the relationships between different demographic/socioeconomic factors and geotagged Twitter users for the whole contiguous United States, aiming to understand how the demographic and socioeconomic factors relate to the number of Twitter users at county level. To effectively identify the local Twitter users for each county of the United States, we integrate three commonly used methods and develop a query approach in a high-performance computing environment. The results demonstrate that we can not only identify how the demographic and socioeconomic factors relate to the number of Twitter users, but can also measure and map how the influence of these factors vary across counties. Numéro de notice : A2019-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1434834 Date de publication en ligne : 09/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1434834 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92338
in Cartography and Geographic Information Science > vol 46 n° 3 (May 2019) . - pp 228 - 242[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019031 RAB Revue Centre de documentation En réserve L003 Disponible vol 43 n° 5 - November 2016 - Integrating big social data, computing and modeling for spatial social science (Bulletin de Cartography and Geographic Information Science) / Xinyue YePermalinkSinoGrids: a practice for open urban data in China / Xinyue Ye in Cartography and Geographic Information Science, vol 43 n° 5 (November 2016)Permalinkvol 30 n° 9-10 - September - October 2016 - Human dynamics in the mobile and big data era (Bulletin de International journal of geographical information science IJGIS) / Shih-Lung ShawPermalink