Détail de l'auteur
Auteur Sterling Quinn |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluating geovisualization for spatial learning analytics / Anthony C. Robinson in International journal of cartography, vol 6 n° 3 (October 2020)
[article]
Titre : Evaluating geovisualization for spatial learning analytics Type de document : Article/Communication Auteurs : Anthony C. Robinson, Auteur ; Cary L. Anderson, Auteur ; Sterling Quinn, Auteur Année de publication : 2020 Article en page(s) : pp 331 - 349 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse géovisuelle
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage (cognition)
[Termes IGN] convivialité
[Termes IGN] formation
[Termes IGN] formation à distance
[Termes IGN] géographie
[Termes IGN] pédagogie
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Contemporary systems for supporting digital learning are capable of collecting a wide range of data on learner behaviours. The emerging science and technology of learning analytics seeks to use this information to improve learning outcomes and support institutional assessment. In this work we explore the potential for the spatial dimension in learning analytics, and we evaluate a prototype geovisualization system designed to support what we call spatial learning analytics. A user evaluation with geographers and educators was conducted to characterize the usability and utility of our prototype spatial learning analytics system. By helping us understand what our prototype system does and does not do well, we are able to suggest a variety of new ways in which future spatial learning analytics systems can be developed. Numéro de notice : A2020-651 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/23729333.2020.1735034 Date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.1080/23729333.2020.1735034 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96107
in International journal of cartography > vol 6 n° 3 (October 2020) . - pp 331 - 349[article]A geovisual analytics exploration of the OpenStreetMap crowd / Sterling Quinn in Cartography and Geographic Information Science, Vol 45 n° 2 (March 2018)
[article]
Titre : A geovisual analytics exploration of the OpenStreetMap crowd Type de document : Article/Communication Auteurs : Sterling Quinn, Auteur ; Alan M. MacEachren, Auteur Année de publication : 2018 Article en page(s) : pp 140 - 155 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse géovisuelle
[Termes IGN] conception orientée utilisateur
[Termes IGN] données localisées des bénévoles
[Termes IGN] OpenStreetMap
[Termes IGN] outil d'aide à la comparaison
[Termes IGN] production participative
[Termes IGN] utilisateur
[Vedettes matières IGN] GéovisualisationRésumé : (Auteur) It is sometimes easy to forget that massive crowdsourced data products such as Wikipedia and OpenStreetMap (OSM) are the sum of individual human efforts stemming from a variety of personal and institutional interests. We present a geovisual analytics tool called Crowd Lens for OpenStreetMap designed to help professional users of OSM make sense of the characteristics of the “crowd” that constructed OSM in specific places. The tool uses small multiple maps to visualize each contributor’s piece of the crowdsourced whole, and links OSM features with the free-form commit messages supplied by their contributors. Crowd Lens allows sorting and filtering contributors by characteristics such as number of contributions, most common language used, and OSM attribute tags applied. We describe the development and evaluation of Crowd Lens, showing how a multiple-stage user-centered design process (including testing by geospatial technology professionals) helped shape the tool’s interface and capabilities. We also present a case study using Crowd Lens to examine cities in six continents. Our findings should assist institutions deliberating OSM’s fitness for use for different applications. Crowd Lens is also potentially informative for researchers studying Internet participation divides and ways that crowdsourced products can be better comprehended with visual analytics methods. Numéro de notice : A2018-007 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2016.1276479 En ligne : https://doi.org/10.1080/15230406.2016.1276479 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88976
in Cartography and Geographic Information Science > Vol 45 n° 2 (March 2018) . - pp 140 - 155[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018021 RAB Revue Centre de documentation En réserve L003 Disponible A geolinguistic approach for comprehending local influence in OpenStreetMap / Sterling Quinn in Cartographica, vol 51 n° 2 (Summer 2016)
[article]
Titre : A geolinguistic approach for comprehending local influence in OpenStreetMap Type de document : Article/Communication Auteurs : Sterling Quinn, Auteur Année de publication : 2016 Article en page(s) : pp 67 - 83 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] Amérique du sud
[Termes IGN] anglais (langue)
[Termes IGN] approche participative
[Termes IGN] données localisées des bénévoles
[Termes IGN] langue locale
[Termes IGN] OpenStreetMapRésumé : (Auteur) OpenStreetMap (OSM) thrives on allowing anyone in the world to contribute features to a free online geographical database, thereby allowing international mixes of contributors to create the map in any given place. Using South America as a test area, I explore the geography of OSM contributors by applying automated language identification to the free-form comments that contributors make when saving their work. By cross-referencing these languages with users' self-reported hometowns from their profiles, I evaluate the effectiveness of language detection as a method for inferring the percentage of local contributors versus the percentage of “armchair mappers” from elsewhere. I show that most English-speaking contributors to the South American OSM are from outside the continent (rather than multilingual locals). The percentage of English use is higher in poor areas and rural areas, suggesting that residents of these places exercise less control over their map contents. Finally, I demonstrate that some features related to daily needs of health, education, and transportation are mapped with higher priority by contributors who speak the local language. These findings give researchers and organizations a deeper understanding of the OSM contributor base and potential shortcomings that might affect the data's fitness for use in any given place. Numéro de notice : A2016-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.3138/cart.51.2.3301 En ligne : http://dx.doi.org/10.3138/cart.51.2.3301 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81494
in Cartographica > vol 51 n° 2 (Summer 2016) . - pp 67 - 83[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 031-2016021 RAB Revue Centre de documentation En réserve L003 Disponible