Détail de l'auteur
Auteur Baolin Xue |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas / Xiaoqian Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 117 (July 2016)
[article]
Titre : Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas Type de document : Article/Communication Auteurs : Xiaoqian Zhao, Auteur ; Qinghua Guo, Auteur ; Yanjun Su, Auteur ; Baolin Xue, Auteur Année de publication : 2016 Article en page(s) : pp 79 – 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage numérique d'image
[Termes IGN] forêt
[Termes IGN] semence
[Termes IGN] test de performance
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Filtering of light detection and ranging (LiDAR) data into the ground and non-ground points is a fundamental step in processing raw airborne LiDAR data. This paper proposes an improved progressive triangulated irregular network (TIN) densification (IPTD) filtering algorithm that can cope with a variety of forested landscapes, particularly both topographically and environmentally complex regions. The IPTD filtering algorithm consists of three steps: (1) acquiring potential ground seed points using the morphological method; (2) obtaining accurate ground seed points; and (3) building a TIN-based model and iteratively densifying TIN. The IPTD filtering algorithm was tested in 15 forested sites with various terrains (i.e., elevation and slope) and vegetation conditions (i.e., canopy cover and tree height), and was compared with seven other commonly used filtering algorithms (including morphology-based, slope-based, and interpolation-based filtering algorithms). Results show that the IPTD achieves the highest filtering accuracy for nine of the 15 sites. In general, it outperforms the other filtering algorithms, yielding the lowest average total error of 3.15% and the highest average kappa coefficient of 89.53%. Numéro de notice : A2016-582 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.03.016 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.03.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81723
in ISPRS Journal of photogrammetry and remote sensing > vol 117 (July 2016) . - pp 79 – 91[article]