Détail de l'auteur
Auteur Malgorzata Jarząbek-Rychard |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fusion of thermal imagery with point clouds for building façade thermal attribute mapping / Dong Lin in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Fusion of thermal imagery with point clouds for building façade thermal attribute mapping Type de document : Article/Communication Auteurs : Dong Lin, Auteur ; Malgorzata Jarząbek-Rychard, Auteur ; Xiaochong Tong, Auteur ; Hans-Gerd Maas, Auteur Année de publication : 2019 Article en page(s) : pp 162 - 175 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] façade
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] texturageRésumé : (Auteur) Thermal image data are widely used to assess the insulation quality of buildings and to detect thermal leakages. In our approach, we merge terrestrial thermal image data and 3D point clouds to perform thermal texture mapping for building facades. Since geo-referencing data of a hand-held thermal camera is usually not available in such applications, registration between thermal images and a 3D point cloud (for instance generated from RGB image data by structure-from-motion techniques) is essential. In our approach, thermal image data registration is conducted in four steps: First, another point cloud is generated from the thermal image data. Next, a coarse registration between thermal point cloud and RGB point cloud is performed using the fast global registration (FGR) algorithm. The best corresponding thermal-RGB image pairs are acquired by picking up the lowest Euclidean distance between the exterior orientation parameters of thermal images and transformed exterior orientation parameters of RGB images. Subsequently, radiation-invariant feature transform (RIFT), normalized barycentric coordinate system (NBCS) and random sample consensus (RANSAC) are employed to extract reliable matching features on thermal-RGB image pairs. Afterwards, a fine registration is performed by mono-plotting of the RGB image, followed by image resection of the thermal image. Finally, in terms of texture mapping algorithms, in order to remove the blur effects caused by small misalignments for different candidate images, a global image pose refinement approach, which aims to minimize the temperature disagreements provided by different images for the same object points, is proposed. In addition, in order to ensure high geometric and radiant accuracy, camera calibrations are performed. Experiments showed that the proposed method could not only achieve high geometric registration accuracy, but also provide a good radiometric accuracy with RMSE lower than 1.5 °C. Numéro de notice : A2019-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.010 Date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92674
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 162 - 175[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures / Malgorzata Jarząbek-Rychard in ISPRS Journal of photogrammetry and remote sensing, vol 118 (August 2016)
[article]
Titre : 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures Type de document : Article/Communication Auteurs : Malgorzata Jarząbek-Rychard, Auteur ; Andrzej Borkowski, Auteur Année de publication : 2016 Article en page(s) : pp 1 – 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] interprétation automatique
[Termes IGN] modèle logique de données
[Termes IGN] modèle topologique de données
[Termes IGN] niveau de détail
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroportéRésumé : (auteur) The objective of the paper is to develop an automated method that enables for the recognition and semantic interpretation of topological building structures. The novelty of the proposed modeling approach is an unambiguous decomposition of complex objects into predefined simple parametric structures, resulting in the reconstruction of one topological unit without independent overlapping elements. The aim of a data processing chain is to generate complete polyhedral models at LOD2 with an explicit topological structure and semantic information. The algorithms are performed on 3D point clouds acquired by airborne laser scanning. The presented methodology combines data-based information reflected in an attributed roof topology graph with common knowledge about buildings stored in a library of elementary structures. In order to achieve an appropriate balance between reconstruction precision and visualization aspects, the implemented library contains a set of structure-depended soft modeling rules instead of strictly defined geometric primitives. The proposed modeling algorithm starts with roof plane extraction performed by the segmentation of building point clouds, followed by topology identification and recognition of predefined structures. We evaluate the performance of the novel procedure by the analysis of the modeling accuracy and the degree of modeling detail. The assessment according to the validation methods standardized by the International Society for Photogrammetry and Remote Sensing shows that the completeness of the algorithm is above 80%, whereas the correctness exceeds 98%. Numéro de notice : A2016-587 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.04.005 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.04.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81731
in ISPRS Journal of photogrammetry and remote sensing > vol 118 (August 2016) . - pp 1 – 12[article]