Détail de l'auteur
Auteur David W. S. Wong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? / Qunying Huang in International journal of geographical information science IJGIS, vol 30 n° 9-10 (September - October 2016)
[article]
Titre : Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? Type de document : Article/Communication Auteurs : Qunying Huang, Auteur ; David W. S. Wong, Auteur Année de publication : 2016 Article en page(s) : pp 1871 - 1898 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse socio-économique
[Termes IGN] base de données spatiotemporelles
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] morphologie urbaine
[Termes IGN] surveillance
[Termes IGN] TwitterRésumé : (Auteur) Individual activity patterns are influenced by a wide variety of factors. The more important ones include socioeconomic status (SES) and urban spatial structure. While most previous studies relied heavily on the expensive travel-diary type data, the feasibility of using social media data to support activity pattern analysis has not been evaluated. Despite the various appealing aspects of social media data, including low acquisition cost and relatively wide geographical and international coverage, these data also have many limitations, including the lack of background information of users, such as home locations and SES. A major objective of this study is to explore the extent that Twitter data can be used to support activity pattern analysis. We introduce an approach to determine users’ home and work locations in order to examine the activity patterns of individuals. To infer the SES of individuals, we incorporate the American Community Survey (ACS) data. Using Twitter data for Washington, DC, we analyzed the activity patterns of Twitter users with different SESs. The study clearly demonstrates that while SES is highly important, the urban spatial structure, particularly where jobs are mainly found and the geographical layout of the region, plays a critical role in affecting the variation in activity patterns between users from different communities. Numéro de notice : A2016-570 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1145225 En ligne : http://dx.doi.org/10.1080/13658816.2016.1145225 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81714
in International journal of geographical information science IJGIS > vol 30 n° 9-10 (September - October 2016) . - pp 1871 - 1898[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016051 RAB Revue Centre de documentation En réserve L003 Disponible