Détail de l'auteur
Auteur Qingsheng Guo |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
On the spatial distribution of buildings for map generalization / Zhiwei Wei in Cartography and Geographic Information Science, Vol 45 n° 6 (November 2018)
[article]
Titre : On the spatial distribution of buildings for map generalization Type de document : Article/Communication Auteurs : Zhiwei Wei, Auteur ; Qingsheng Guo, Auteur ; Lin Wang, Auteur ; Fen Yan, Auteur Année de publication : 2018 Article en page(s) : pp 539 - 555 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de groupement
[Termes IGN] analyse en composantes principales
[Termes IGN] arbre aléatoire minimum
[Termes IGN] bati
[Termes IGN] distribution spatiale
[Termes IGN] données localisées des bénévoles
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] OpenStreetMap
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Information on spatial distribution of buildings must be explored as part of the process of map generalization. A new approach is proposed in this article, which combines building classification and clustering to enable the detection of class differences within a pattern, as well as patterns within a class. To do this, an analysis of existing parameters describing building characteristics is performed via principal component analysis (PCA), and four major parameters (i.e. convex hull area, IPQ compactness, number of edges, and smallest minimum bounding rectangle orientation) are selected for further classification based on similarities between building characteristics. A building clustering method based on minimum spanning tree (MST) considering rivers and roads is then applied. Theory and experiments show that use of a relative neighbor graph (RNG) is more effective in detecting linear building patterns than either a nearest neighbor graph (NNG), an MST, or a Gabriel graph (GssG). Building classification and clustering are therefore conducted separately using experimental data extracted from OpenStreetMap (OSM), and linear patterns are then recognized within resultant clusters. Experimental results show that the approach proposed in this article is both reasonable and efficient for mining information on the spatial distribution of buildings for map generalization. Numéro de notice : A2018-480 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1433068 Date de publication en ligne : 15/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1433068 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91258
in Cartography and Geographic Information Science > Vol 45 n° 6 (November 2018) . - pp 539 - 555[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018061 RAB Revue Centre de documentation En réserve L003 Disponible An immune genetic algorithm to buildings displacement in cartographic generalization / Yageng Sun in Transactions in GIS, vol 20 n° 4 (August 2016)
[article]
Titre : An immune genetic algorithm to buildings displacement in cartographic generalization Type de document : Article/Communication Auteurs : Yageng Sun, Auteur ; Qingsheng Guo, Auteur ; Yuangang Liu, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 585 - 612 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme génétique
[Termes IGN] bâtiment
[Termes IGN] contrainte géométrique
[Termes IGN] contrainte relationnelle
[Termes IGN] déplacement d'objet géographique
[Termes IGN] généralisation automatique de données
[Termes IGN] généralisation cartographique
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Spatial conflicts may occur when map data are displayed at a scale smaller than that of the source map. This study applies the displacement operator in cartographic generalization to resolve such spatial conflicts and to improve the clarity and legibility of map. The immune genetic algorithm (IGA) is used in this study for buildings displacement to solve conflicts. IGA is based on the genetic algorithm (GA) and employs the self-adjusting mechanism of antibody concentration to enhance population diversity. Meanwhile, the elitism retention strategy is adopted in IGA to guarantee that the best individual (antibody) is not lost and destroyed in the next generation to strengthen convergence efficiency. The compared experiment between IGA and GA shows that the displacement result produced by IGA performs better than GA. Finally, in order to make the displaced map more attractive to cartographers, two constraints – the building alignment constraint and building tangent relation constraint – are applied in IGA to restrict the buildings’ displacement. The same experimental data are adopted to prove that the improved IGA is useful for maintaining the two constraints. Numéro de notice : A2016--053 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12165 En ligne : http://dx.doi.org/10.1111/tgis.12165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83771
in Transactions in GIS > vol 20 n° 4 (August 2016) . - pp 585 - 612[article]Building displacement based on the topological structure / Yageng Sun in Cartographic journal (the), Vol 53 n° 3 (August 2016)
[article]
Titre : Building displacement based on the topological structure Type de document : Article/Communication Auteurs : Yageng Sun, Auteur ; Qingsheng Guo, Auteur ; Yuangang Liu, Auteur ; et al., Auteur Année de publication : 2016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme snake
[Termes IGN] déplacement d'objet géographique
[Termes IGN] généralisation automatique de données
[Termes IGN] optimisation (mathématiques)
[Termes IGN] partitionnement
[Termes IGN] pondération
[Termes IGN] relation spatiale
[Termes IGN] triangulation de Delaunay
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Map data at smaller scales than their source can result in spatial conflict, whereby map symbols become too close, or overlaid. Server map generalisation operators may be applied to solve this problem, including displacement. In this paper, we show how an optimisation algorithm, the snake algorithm, was used to displace multiple objects in order to resolve spatial conflicts and maintain important spatial relationships between objects during displacement. Two principles based on the snake algorithm are proposed in this paper. First, the truss structure mirroring spatial proximity relationships between buildings and between building and road is formed based on the weighted proximity graph derived from constrained Delaunay triangulations (CDT) in each map partition. In the weighted proximity graph, each connecting line is determined as a snake and as an element unit to assemble the global stiffness matrix in snake algorithm. Second, a buffer method that calculates force between a building and a road (or other linear features) or between pair of buildings is adopted in the snake algorithm. This avoids the imbalance phenomenon caused by different force calculation methods during the displacement. The feasibility of the approach is demonstrated in obtaining real geographic data. Finally, the results are cartographically usable and in particular, the spatial relationships between objects are preserved. Numéro de notice : A2016-680 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1179/1743277414Y.0000000089 En ligne : http://dx.doi.org/10.1179/1743277414Y.0000000089 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81937
in Cartographic journal (the) > Vol 53 n° 3 (August 2016)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 030-2016031 RAB Revue Centre de documentation En réserve L003 Disponible