Détail de l'auteur
Auteur Kan Wang |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
LEO satellite clock analysis and prediction for positioning applications / Kan Wang in Geo-spatial Information Science, vol 25 n° 1 (March 2022)
[article]
Titre : LEO satellite clock analysis and prediction for positioning applications Type de document : Article/Communication Auteurs : Kan Wang, Auteur ; Ahmed El-Mowafy, Auteur Année de publication : 2022 Article en page(s) : pp 14 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] chronométrie
[Termes IGN] horloge du satellite
[Termes IGN] orbite basse
[Termes IGN] oscillateur
[Termes IGN] relativité généraleRésumé : (auteur) The positioning service aided by low Earth orbit (LEO) mega-constellations has become a hot topic in recent years. To achieve precise positioning, accuracy of the LEO clocks is important for single-receiver users. To bridge the gap between the applicable time of the clock products and the time of positioning, the precise LEO clocks need to be predicted over a certain period depending on the sampling interval of the clock products. This study discusses the prediction errors for periods from 10 s to 1 h for two typical LEO clock types, i.e. the ultra-stable oscillator (USO) and the oven-controlled crystal oscillator (OCXO). The prediction is based on GNSS-determined precise clock estimates, where the clock stability is related to the GNSS estimation errors, the behaviors of the oscillators themselves, the systematic effects related to the environment and the relativistic effects, and the stability of the time reference. Based on real data analysis, LEO clocks of the two different types are simulated under different conditions, and a prediction model considering the systematic effects is proposed. Compared to a simple polynomial fitting model usually applied, the proposed model can significantly reduce the prediction errors, i.e. by about 40%-70% in simulations and about 5%-30% for real data containing different miss-modeled effects. For both clock types, short-term prediction of 1 min would result in a root mean square error (RMSE) of a few centimeters when using a very stable time reference. The RMSE amounts to about 0.1 m, when a typical real-time time reference of the national center for space studies (CNES) real-time clocks was used. For long-term prediction of 1 h, the RMSE could range from below 1 m to a few meters for the USOs, depending on the complexity of the miss-modeled effects. For OCXOs, the 1 h prediction could lead to larger errors with an RMSE of about 10 m. Numéro de notice : A2022-303 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/10095020.2021.1917310 Date de publication en ligne : 08/06/2021 En ligne : https://doi.org/10.1080/10095020.2021.1917310 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100377
in Geo-spatial Information Science > vol 25 n° 1 (March 2022) . - pp 14 - 33[article]POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections / Amir Allahvirdi-Zadeh in GPS solutions, vol 25 n° 2 (April 2021)
[article]
Titre : POD of small LEO satellites based on precise real-time MADOCA and SBAS-aided PPP corrections Type de document : Article/Communication Auteurs : Amir Allahvirdi-Zadeh, Auteur ; Kan Wang, Auteur ; Ahmed El-Mowafy, Auteur Année de publication : 2021 Article en page(s) : 14 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] données GNSS
[Termes IGN] horloge du satellite
[Termes IGN] orbite basse
[Termes IGN] orbitographie par GNSS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] temps réelRésumé : (Auteur) For real-time precise orbit determination (POD) of low earth orbit (LEO) satellites, high-accuracy global navigation satellite system (GNSS) orbit and clock products are necessary in real time. Recently, the Japanese multi-GNSS advanced demonstration of orbit and clock analysis precise point positioning (PPP) service and the new generation of the Australian/New Zealand satellite-based augmentation system (SBAS)-aided PPP service provide free and precise GNSS products that are directly broadcast through the navigation and geostationary earth orbit satellites, respectively. With the high quality of both products shown in this study, a 3D accuracy of centimeters can be achieved in the post-processing mode for the reduced-dynamic orbits of small LEO satellites having a duty cycle down to 40% and at sub-dm to dm level for the kinematic orbits. The results show a promising future for high-accuracy real-time POD onboard LEO satellites benefiting from the precise free-of-charge PPP corrections broadcast by navigation systems or SBAS. Numéro de notice : A2021-091 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01078-8 Date de publication en ligne : 11/01/2021 En ligne : https://doi.org/10.1007/s10291-020-01078-8 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96880
in GPS solutions > vol 25 n° 2 (April 2021) . - 14 p.[article]
Titre : Advanced modeling and algorithms for high-precision GNSS analysis Type de document : Thèse/HDR Auteurs : Kan Wang, Auteur Editeur : Zurich : Eidgenossische Technische Hochschule ETH - Ecole Polytechnique Fédérale de Zurich EPFZ Année de publication : 2016 Collection : Dissertationen ETH num. 23188 Note générale : bibliographie
thesis submitted to attain the degree of doctor of sciences of ETH ZurichLangues : Anglais (eng) Descripteur : [Termes IGN] ambiguïté entière
[Termes IGN] antenne GPS
[Termes IGN] centre de phase
[Termes IGN] données BeiDou
[Termes IGN] données Galileo
[Termes IGN] données GPS
[Termes IGN] double différence
[Termes IGN] erreur systématique
[Termes IGN] GPS en mode différentiel
[Termes IGN] horloge
[Termes IGN] phase GNSS
[Termes IGN] positionnement cinématique
[Termes IGN] récepteur GNSS
[Termes IGN] récepteur trifréquence
[Termes IGN] résolution d'ambiguïté
[Termes IGN] retard ionosphèrique
[Termes IGN] Suisse
[Termes IGN] trajet multiple
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) In the recent ten years, the Global Navigation Satellite System (GNSS) processing has experienced a fast development in many areas including the increasing number of frequencies, the higher quality of positioning instruments, e.g. the receiver clocks and the satellite clocks, and more integrated modeling and calculation strategies. This thesis includes investigations of different modeling and parameterization methods in modern GNSS positioning with the focus on three important positioning error sources: the receiver clock errors, the phase ambiguities and the ionospheric delays.
The thesis shows that making use of the high-quality receiver clocks and applying appropriate receiver clock modeling can help to improve the kinematic height estimates, which are highly correlated with the receiver clock parameters. An efficient pre-elimination and back-substitution strategy of epoch parameters with relative clock constraints between subsequent and near-subsequent epochs has been developed to enable processing of, e.g., high-rate data. A detailed analysis of the relationship between the clock quality and the improvement of kinematic heights has been performed. Studies were also conducted to decorrelate the receiver clock parameters, the kinematic heights and the troposphere parameters. Experiments with real data have shown that appropriate deterministic and stochastic clock models can also be helpful to increase the resolution of the estimated Zenith Path Delay (ZPD) parameters without obvious degradation of the stability of the kinematic heights.
The second aspect of the thesis focuses on the resolution of triple-frequency phase ambiguities with different linear combinations. A complete analytical investigation of Geometry-Free (GF) and Ionosphere-Free (IF) triple-frequency phase ambiguity resolution with minimized noise level has been performed for different frequency triplets. The analysis was done separately for the best two linear combinations and the third one. Experiments have shown that the fractional parts and the formal errors of the combined ambiguities of the best two linear combinations are relatively small for Galileo E1, E5b and E5a and GPS L1, L2 and L5 triplets, while the third linear combination remains a challenge. Further analysis with the geostationary satellites of the Beidou Navigation Satellite System (BDS) elaborated in the framework of this thesis has also confirmed that the combined ambiguities from the best two GF and IF linear combinations can be fixed by rounding, while the estimated ambiguities on L1 have relatively large deviations from the values obtained from the traditional dual-frequency double-difference ambiguity resolution. Apart from the triple-frequency ambiguity resolution on the double-difference level, the so-called track-to-track ambiguities between different tracks of the same receiver and the same satellite have also been investigated for the best two triple-frequency linear combinations using GPS L1, L2 and L5 as well as Galileo E1, E5b and E5a observations. The outcome demonstrates that elevation-dependent influences on the observations like Phase Center Variations (PCVs), Phase Center Offsets (PCOs) and multipath are important for the fixing of the track-to-track ambiguities.
The combined track-to-track ambiguities using the best two linear combinations are also effective in detecting problems in the observation data.
The third aspect of the thesis includes the investigation of the differential ionospheric delays and gradients in the region of Switzerland from 1999 to 2013. In differential Global Positioning System (GPS) positioning, the ionospheric delays for short baselines are in most cases small enough to be ignored, except under extreme conditions, e.g., during ionospheric stormy days, and for applications with high integrity requirements, e.g., during approach and landing of aircrafts. This thesis introduces an algorithm using double-difference phase measurements with resolved phase ambiguities and global ionosphere maps provided by the Center for Orbit Determination in Europe (CODE) to extract the single-difference ionospheric delays, and enabling an automatic and robust processing of the data over 15 years. The results show that the daily maximum slant ionospheric gradients calculated from the differential slant ionopheric delays and the baseline lengths from 1999 to 2013 are below the slant ionosphere gradient boundary of the Conterminous United States (CONUS) ionospheric anomaly threat model.Numéro de notice : 17250 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : dissertation : sciences : ETH Zurich : 2016 En ligne : http://dx.doi.org/10.3929/ethz-a-010610972 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81986