Détail de l'auteur
Auteur Xiaolu Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Crowdsourcing functions of the living city from Twitter and Foursquare data / Xiaolu Zhou in Cartography and Geographic Information Science, vol 43 n° 5 (November 2016)
[article]
Titre : Crowdsourcing functions of the living city from Twitter and Foursquare data Type de document : Article/Communication Auteurs : Xiaolu Zhou, Auteur ; Liang Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 393 - 404 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Boston (Massachusetts)
[Termes IGN] Chicago (Illinois)
[Termes IGN] dimension temporelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] géobalise
[Termes IGN] planification urbaine
[Termes IGN] réseau social
[Termes IGN] système d'information géographique
[Termes IGN] villeRésumé : (Auteur) Urban functions are closely related to people’s spatiotemporal activity patterns, transportation needs, and a city’s business distribution and development trends. Studies investigating urban functions have used different data sources, such as remotely sensed imageries, observation, photography, and cognitive maps. However, these data sources usually suffer from low spatial, temporal, and thematic resolution. This article attempts to investigate human activities to understand urban functions through crowdsourcing social media data. In this study, we mined Twitter and Foursquare data to extract and analyze six types of human activities. The spatiotemporal analysis revealed hotspots for different activity intensities at different temporal resolution. We also applied the classified model in a real-time system to extract information of various urban functions. This study demonstrates the significance and usefulness of social sensing in analyzing urban functions. By combining different platforms of social media data and analyzing people’s geo-tagged city experience, this article contributes to leverage voluntary local knowledge to better depict human dynamics, discover spatiotemporal city characteristics, and convey information about cities. Numéro de notice : A2016-690 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/15230406.2015.1128852 En ligne : https://doi.org/10.1080/15230406.2015.1128852 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82018
in Cartography and Geographic Information Science > vol 43 n° 5 (November 2016) . - pp 393 - 404[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2016051 RAB Revue Centre de documentation En réserve L003 Disponible