Détail de l'auteur
Auteur Hamid Hamraz |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees / Hamid Hamraz in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
[article]
Titre : Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees Type de document : Article/Communication Auteurs : Hamid Hamraz, Auteur ; Nathan B. Jacobs, Auteur ; Marco A. Contreras, Auteur ; Chase H. Clark, Auteur Année de publication : 2019 Article en page(s) : pp 219 - 230 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] arbre caducifolié
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] houppier
[Termes IGN] modèle numérique de surface
[Termes IGN] Pinophyta
[Termes IGN] semis de pointsRésumé : (auteur) The purpose of this study was to investigate the use of deep learning for coniferous/deciduous classification of individual trees segmented from airborne LiDAR data. To enable processing by a deep convolutional neural network (CNN), we designed two discrete representations using leaf-off and leaf-on LiDAR data: a digital surface model with four channels (DSM × 4) and a set of four 2D views (4 × 2D). A training dataset of tree crowns was generated via segmentation of tree crowns, followed by co-registration with field data. Potential mislabels due to GPS error or tree leaning were corrected using a statistical ensemble filtering procedure. Because the training data was heavily unbalanced (~8% conifers), we trained an ensemble of CNNs on random balanced sub-samples. Benchmarked against multiple traditional shallow learning methods using manually designed features, the CNNs improved accuracies up to 14%. The 4 × 2D representation yielded similar classification accuracies to the DSM × 4 representation (~82% coniferous and ~90% deciduous) while converging faster. Further experimentation showed that early/late fusion of the channels in the representations did not affect the accuracies in a significant way. The data augmentation that was used for the CNN training improved the classification accuracies, but more real training instances (especially coniferous) likely results in much stronger improvements. Leaf-off LiDAR data were the primary source of useful information, which is likely due to the perennial nature of coniferous foliage. LiDAR intensity values also proved to be useful, but normalization yielded no significant improvement. As we observed, large training data may compensate for the lack of a subset of important domain data. Lastly, the classification accuracies of overstory trees (~90%) were more balanced than those of understory trees (~90% deciduous and ~65% coniferous), which is likely due to the incomplete capture of understory tree crowns via airborne LiDAR. In domains like remote sensing and biomedical imaging, where the data contain a large amount of information and are not friendly to human visual system, human-designed features may become suboptimal. As exemplified by this study, automatic, objective derivation of optimal features via deep learning can improve prediction tasks in such domains. Numéro de notice : A2019-547 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.10.011 Date de publication en ligne : 03/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.10.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94192
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019) . - pp 219 - 230[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019123 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019122 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds / Hamid Hamraz in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
[article]
Titre : Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Hamid Hamraz, Auteur ; Marco A. Contreras, Auteur ; Jun Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 385 - 392 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre caducifolié
[Termes IGN] canopée
[Termes IGN] croissance végétale
[Termes IGN] densité des points
[Termes IGN] distribution spatiale
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Kentucky (Etats-Unis)
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] sous-bois
[Termes IGN] strate végétale
[Termes IGN] structure d'un peuplement forestierRésumé : (Auteur) Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest – a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types. Numéro de notice : A2017-519 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.07.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.07.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86481
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 385 - 392[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017083 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data / Hamid Hamraz in International journal of applied Earth observation and geoinformation, vol 52 (October 2016)
[article]
Titre : A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data Type de document : Article/Communication Auteurs : Hamid Hamraz, Auteur ; Marco A. Contreras, Auteur ; Jun Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 532 - 541 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] houppier
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Kentucky (Etats-Unis)
[Termes IGN] pente
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) This paper presents a non-parametric approach for segmenting trees from airborne LiDAR data in deciduous forests. Based on the LiDAR point cloud, the approach collects crown information such as steepness and height on-the-fly to delineate crown boundaries, and most importantly, does not require a priori assumptions of crown shape and size. The approach segments trees iteratively starting from the tallest within a given area to the smallest until all trees have been segmented. To evaluate its performance, the approach was applied to the University of Kentucky Robinson Forest, a deciduous closed-canopy forest with complex terrain and vegetation conditions. The approach identified 94% of dominant and co-dominant trees with a false detection rate of 13%. About 62% of intermediate, overtopped, and dead trees were also detected with a false detection rate of 15%. The overall segmentation accuracy was 77%. Correlations of the segmentation scores of the proposed approach with local terrain and stand metrics was not significant, which is likely an indication of the robustness of the approach as results are not sensitive to the differences in terrain and stand structures. Numéro de notice : A2016-705 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2016.07.006 En ligne : http://dx.doi.org/10.1016/j.jag.2016.07.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82075
in International journal of applied Earth observation and geoinformation > vol 52 (October 2016) . - pp 532 - 541[article]