Détail de l'auteur
Auteur A. Beina |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Shadow detection and removal in RGB VHR images for land use unsupervised classification / A. Movia in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
[article]
Titre : Shadow detection and removal in RGB VHR images for land use unsupervised classification Type de document : Article/Communication Auteurs : A. Movia, Auteur ; A. Beina, Auteur ; F. Crosilla, Auteur Année de publication : 2016 Article en page(s) : pp 485 - 495 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image numérique
[Termes IGN] analyse procustéenne
[Termes IGN] anisotropie
[Termes IGN] classification non dirigée
[Termes IGN] détection d'ombre
[Termes IGN] détection de changement
[Termes IGN] factorisation de Cholesky
[Termes IGN] image à très haute résolution
[Termes IGN] image RVBRésumé : (Auteur) Nowadays, high resolution aerial images are widely available thanks to the diffusion of advanced technologies such as UAVs (Unmanned Aerial Vehicles) and new satellite missions. Although these developments offer new opportunities for accurate land use analysis and change detection, cloud and terrain shadows actually limit benefits and possibilities of modern sensors.
Focusing on the problem of shadow detection and removal in VHR color images, the paper proposes new solutions and analyses how they can enhance common unsupervised classification procedures for identifying land use classes related to the CO2 absorption.
To this aim, an improved fully automatic procedure has been developed for detecting image shadows using exclusively RGB color information, and avoiding user interaction. Results show a significant accuracy enhancement with respect to similar methods using RGB based indexes.
Furthermore, novel solutions derived from Procrustes analysis have been applied to remove shadows and restore brightness in the images. In particular, two methods implementing the so called “anisotropic Procrustes” and the “not-centered oblique Procrustes” algorithms have been developed and compared with the linear correlation correction method based on the Cholesky decomposition.
To assess how shadow removal can enhance unsupervised classifications, results obtained with classical methods such as k-means, maximum likelihood, and self-organizing maps, have been compared to each other and with a supervised clustering procedure.Numéro de notice : A2016-793 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.05.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.05.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82510
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 485 - 495[article]