Détail de l'auteur
Auteur Theofilos Vanikiotis |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery / S. Stagakis in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
[article]
Titre : Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery Type de document : Article/Communication Auteurs : S. Stagakis, Auteur ; Theofilos Vanikiotis, Auteur ; Olga Sykioti, Auteur Année de publication : 2016 Article en page(s) : pp 79 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse des mélanges spectraux
[Termes IGN] carte de la végétation
[Termes IGN] classification bayesienne
[Termes IGN] effet d'ombre
[Termes IGN] espèce végétale
[Termes IGN] Fagus sylvatica
[Termes IGN] Grèce
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image PROBA-CHRIS
[Termes IGN] orthoimage
[Termes IGN] parc naturel national
[Termes IGN] partition d'image
[Termes IGN] Pinus nigra
[Termes IGN] richesse floristique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The advancing technology of hyperspectral remote sensing offers the opportunity of accurate land cover characterization of complex natural environments. In this study, a linear spectral unmixing algorithm that incorporates a novel hierarchical Bayesian approach (BI-ICE) was applied on two spatially and temporally adjacent CHRIS/PROBA images over a forest in North Pindos National Park (Epirus, Greece). The scope is to investigate the potential of this algorithm to discriminate two different forest species (i.e. beech – Fagus sylvatica, pine – Pinus nigra) and produce accurate species-specific abundance maps. The unmixing results were evaluated in uniformly distributed plots across the test site using measured fractions of each species derived by very high resolution aerial orthophotos. Landsat-8 images were also used to produce a conventional discrete-type classification map of the test site. This map was used to define the exact borders of the test site and compare the thematic information of the two mapping approaches (discrete vs abundance mapping). The required ground truth information, regarding training and validation of the applied mapping methodologies, was collected during a field campaign across the study site. Abundance estimates reached very good overall accuracy (R2 = 0.98, RMSE = 0.06). The most significant source of error in our results was due to the shadowing effects that were very intense in some areas of the test site due to the low solar elevation during CHRIS acquisitions. It is also demonstrated that the two mapping approaches are in accordance across pure and dense forest areas, but the conventional classification map fails to describe the natural spatial gradients of each species and the actual species mixture across the test site. Overall, the BI-ICE algorithm presented increased potential to unmix challenging objects with high spectral similarity, such as different vegetation species, under real and not optimum acquisition conditions. Its full potential remains to be investigated in further and more complex study sites in view of the upcoming satellite hyperspectral missions. Numéro de notice : A2016-778 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.05.013 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.05.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82473
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 79 - 89[article]