Détail de l'auteur
Auteur Hamid Mahmoudabadi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Efficient terrestrial laser scan segmentation exploiting data structure / Hamid Mahmoudabadi in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
[article]
Titre : Efficient terrestrial laser scan segmentation exploiting data structure Type de document : Article/Communication Auteurs : Hamid Mahmoudabadi, Auteur ; Michael J. Olsen, Auteur ; Sinisa Todorovic, Auteur Année de publication : 2016 Article en page(s) : pp 135 - 150 Note générale : Bibliogaphie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] colorimétrie
[Termes IGN] densité d'information
[Termes IGN] intensité lumineuse
[Termes IGN] modèle logique de données
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] système de coordonnées
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation. Numéro de notice : A2016-781 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.05.015 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.05.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82477
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 135 - 150[article]