Détail de l'auteur
Auteur Nina E. Kilham |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping of land cover in northern California with simulated hyperspectral satellite imagery / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
[article]
Titre : Mapping of land cover in northern California with simulated hyperspectral satellite imagery Type de document : Article/Communication Auteurs : Matthew L. Clark, Auteur ; Nina E. Kilham, Auteur Année de publication : 2016 Article en page(s) : pp 228 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données d'occupation du sol
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image hyperspectrale
[Termes IGN] interprétation automatique
[Termes IGN] occupation du sol
[Termes IGN] simulation d'imageRésumé : (Auteur) Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Analysis of hyperspectral, or imaging spectrometer, imagery has shown an impressive capacity to map a wide range of natural and anthropogenic land cover. Applications have been mostly with single-date imagery from relatively small spatial extents. Future hyperspectral satellites will provide imagery at greater spatial and temporal scales, and there is a need to assess techniques for mapping land cover with these data. Here we used simulated multi-temporal HyspIRI satellite imagery over a 30,000 km2 area in the San Francisco Bay Area, California to assess its capabilities for mapping classes defined by the international Land Cover Classification System (LCCS). We employed a mapping methodology and analysis framework that is applicable to regional and global scales. We used the Random Forests classifier with three sets of predictor variables (reflectance, MNF, hyperspectral metrics), two temporal resolutions (summer, spring-summer-fall), two sample scales (pixel, polygon) and two levels of classification complexity (12, 20 classes). Hyperspectral metrics provided a 16.4–21.8% and 3.1–6.7% increase in overall accuracy relative to MNF and reflectance bands, respectively, depending on pixel or polygon scales of analysis. Multi-temporal metrics improved overall accuracy by 0.9–3.1% over summer metrics, yet increases were only significant at the pixel scale of analysis. Overall accuracy at pixel scales was 72.2% (Kappa 0.70) with three seasons of metrics. Anthropogenic and homogenous natural vegetation classes had relatively high confidence and producer and user accuracies were over 70%; in comparison, woodland and forest classes had considerable confusion. We next focused on plant functional types with relatively pure spectra by removing open-canopy shrublands, woodlands and mixed forests from the classification. This 12-class map had significantly improved accuracy of 85.1% (Kappa 0.83) and most classes had over 70% producer and user accuracies. Finally, we summarized important metrics from the multi-temporal Random Forests to infer the underlying chemical and structural properties that best discriminated our land-cover classes across seasons. Numéro de notice : A2016-783 Affiliation des auteurs : non IGN Autre URL associée : Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.06.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.06.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82480
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 228 - 245[article]