Détail de l'auteur
Auteur Debra F. Laefer |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Integration of lidar data and GIS data for point cloud semantic enrichment at the point level / Harith Aljumaily in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 1 (January 2019)
[article]
Titre : Integration of lidar data and GIS data for point cloud semantic enrichment at the point level Type de document : Article/Communication Auteurs : Harith Aljumaily, Auteur ; Debra F. Laefer, Auteur ; Dolores Cuadra, Auteur Année de publication : 2019 Article en page(s) : pp 29 - 42 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Dublin (Irlande ; ville)
[Termes IGN] enrichissement sémantique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction du réseau routier
[Termes IGN] flore urbaine
[Termes IGN] image multibande
[Termes IGN] information sémantique
[Termes IGN] interpolation linéaire
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] système de gestion de base de données
[Termes IGN] zone urbaineRésumé : (auteur) Commercial aerial laser scanning is generally delivered with point-by-point metadata for object identification, but current vendor-generated classification approaches (which rely exclusively on that data) generate high misclassification rates in urban areas. To overcome this problem and provide a fully scalable solution that harnesses distributed computing capabilities, this paper introduces a novel system, employing a MapReduce framework and existing GIS-based data, to provide more detailed and accurate classification. The approach goes beyond traditional gross-level classification (roads, buildings, trees, noise) by enriching the point cloud metadata with detailed semantic information about the object type. The approach was evaluated using two datasets of differing point density, separated by eight years for the same study area in Dublin, Ireland. As evaluated against manually classified data, classification quality ranged from 76% to 91% depending upon category and only 8% remained unclassified, as opposed to the commercial vendor's classification quality which ranged from 43% to 78% with 82% left unclassified. Numéro de notice : A2019-027 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.1.29 Date de publication en ligne : 01/01/2019 En ligne : https://doi.org/10.14358/PERS.85.1.29 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91964
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 1 (January 2019) . - pp 29 - 42[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019011 SL Revue Centre de documentation Revues en salle Disponible Three-dimensional building façade segmentation and opening area detection from point clouds / S.M. Iman Zolanvari in ISPRS Journal of photogrammetry and remote sensing, vol 143 (September 2018)
[article]
Titre : Three-dimensional building façade segmentation and opening area detection from point clouds Type de document : Article/Communication Auteurs : S.M. Iman Zolanvari, Auteur ; Debra F. Laefer, Auteur ; Atteyeh S. Natanzi, Auteur Année de publication : 2018 Article en page(s) : pp 134 - 149 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (Auteur) Laser scanning generates a point cloud from which geometries can be extracted, but most methods struggle to do this automatically, especially for the entirety of an architecturally complex building (as opposed to that of a single façade). To address this issue, this paper introduces the Improved Slicing Method (ISM), an innovative and computationally-efficient method for three-dimensional building segmentation. The method is also able to detect opening boundaries even on roofs (e.g. chimneys), as well as a building’s overall outer boundaries using a local density analysis technique. The proposed procedure is validated by its application to two architecturally complex, historic brick buildings. Accuracies of at least 86% were achieved, with computational times as little as 0.53 s for detecting features from a data set of 5.0 million points. The accuracy more than rivalled the current state of the art, while being up to six times faster and with the further advantage of requiring no manual intervention or reliance on a priori information. Numéro de notice : A2018-358 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.004 Date de publication en ligne : 09/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90592
in ISPRS Journal of photogrammetry and remote sensing > vol 143 (September 2018) . - pp 134 - 149[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018091 RAB Livre Centre de documentation En réserve L003 Disponible 081-2018093 DEP-EXM Livre LASTIG Dépôt en unité Exclu du prêt 081-2018092 DEP-EAF Livre Nancy Dépôt en unité Exclu du prêt A spatio-temporal index for aerial full waveform laser scanning data / Debra F. Laefer in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
[article]
Titre : A spatio-temporal index for aerial full waveform laser scanning data Type de document : Article/Communication Auteurs : Debra F. Laefer, Auteur ; Anh-Vu Vo, Auteur ; Michela Bertolotto, Auteur Année de publication : 2018 Article en page(s) : pp 232 - 251 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre-R
[Termes IGN] base de données localisées
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forme d'onde pleine
[Termes IGN] index spatiotemporel
[Termes IGN] indexation spatiale
[Termes IGN] octreeRésumé : (Auteur) Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2–3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct behaviours of the hybrid indexing for AA and NAA clipping windows are attributable to the different proportion of the local-index-related overheads with respect to the total querying costs. When temporal constraints were added, generally the number of costly spatial checks were reduced, thereby shortening the querying times. Numéro de notice : A2018-125 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.012 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89587
in ISPRS Journal of photogrammetry and remote sensing > vol 138 (April 2018) . - pp 232 - 251[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Slicing method for curved façade and window extraction from point clouds / S.M. Iman Zolanvari in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
[article]
Titre : Slicing method for curved façade and window extraction from point clouds Type de document : Article/Communication Auteurs : S.M. Iman Zolanvari, Auteur ; Debra F. Laefer, Auteur Année de publication : 2016 Article en page(s) : pp 334 - 346 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse structurale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] façade
[Termes IGN] fenêtre (bâtiment)
[Termes IGN] modèle numérique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] surveillance d'ouvrage
[Termes IGN] traitement de semis de pointsRésumé : (Auteur) Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade’s principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area’s boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets. Numéro de notice : A2016-787 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.06.011 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.06.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82502
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 334 - 346[article]