Détail de l'auteur
Auteur Liang Zhao |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Online flu epidemiological deep modeling on disease contact network / Liang Zhao in Geoinformatica, vol 24 n° 2 (April 2020)
[article]
Titre : Online flu epidemiological deep modeling on disease contact network Type de document : Article/Communication Auteurs : Liang Zhao, Auteur ; Jiangzhuo Chen, Auteur ; Feng Chen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 443 – 475 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification semi-dirigée
[Termes IGN] données localisées des bénévoles
[Termes IGN] épidémie
[Termes IGN] itération
[Termes IGN] maladie infectieuse
[Termes IGN] maladie virale
[Termes IGN] modélisation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau social
[Termes IGN] surveillance sanitaireRésumé : (auteur) The surveillance and preventions of infectious disease epidemics such as influenza and Ebola are important and challenging issues. It is therefore crucial to characterize the disease progress and epidemics process efficiently and accurately. Computational epidemiology can model the progression of the disease and its underlying contact network, but as yet lacks the ability to process of real-time and fine-grained surveillance data. Social media, on the other hand, provides timely and detailed disease surveillance but is insensible to the underlying contact network and disease model. To address these challenges simultaneously, this paper proposes a novel semi-supervised neural network framework that integrates the strengths of computational epidemiology and social media mining techniques for influenza epidemiological modeling. Specifically, this framework learns social media users’ health states and intervention actions in real time, regularized by the underlying disease model and contact network. The learned knowledge from social media can then be fed into the computational epidemic model to improve the efficiency and accuracy of disease diffusion modeling. We propose an online optimization algorithm that iteratively processes the above interactive learning process. he extensive experimental results provided demonstrated that our approach can not only outperform competing methods by a substantial margin in forecasting disease outbreaks, but also characterize the individual-level disease progress and diffusion effectively and efficiently. Numéro de notice : A2020-359 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-019-00376-9 Date de publication en ligne : 25/07/2019 En ligne : https://doi.org/10.1007/s10707-019-00376-9 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95264
in Geoinformatica > vol 24 n° 2 (April 2020) . - pp 443 – 475[article]Automatic targeted-domain spatiotemporal event detection in twitter / Ting Hua in Geoinformatica, vol 20 n° 4 (October - December 2016)
[article]
Titre : Automatic targeted-domain spatiotemporal event detection in twitter Type de document : Article/Communication Auteurs : Ting Hua, Auteur ; Feng Chen, Auteur ; Liang Zhao, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 765 - 795 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse spatio-temporelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] positionnement automatique
[Termes IGN] TwitterRésumé : (Auteur) Twitter has become an important data source for detecting events, especially tracking detailed information for events of a specific domain. Previous studies on targeted-domain Twitter information extraction have used supervised learning techniques to identify domain-related tweets, however, the need for extensive manual labeling makes these supervised systems extremely expensive to build and maintain. What’s more, most of these existing work fail to consider spatiotemporal factors, which are essential attributes of target-domain events. In this paper, we propose a semi-supervised method for Automatical Targeted-domain Spatiotemporal Event Detection (ATSED) in Twitter. Given a targeted domain, ATSED first learns tweet labels from historical data, and then detects on-going events from real-time Twitter data streams. Specifically, an efficient label generation algorithm is proposed to automatically recognize tweet labels from domain-related news articles, a customized classifier is created for Twitter data analysis by utilizing tweets’ distinguishing features, and a novel multinomial spatial-scan model is provided to identify geographical locations for detected events. Experiments on 305 million tweets demonstrated the effectiveness of this new approach. Numéro de notice : A2016-815 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article DOI : 10.1007/s10707-016-0263-0 En ligne : http://dx.doi.org/10.1007/s10707-016-0263-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82616
in Geoinformatica > vol 20 n° 4 (October - December 2016) . - pp 765 - 795[article]