Détail de l'auteur
Auteur Edyta Hadas |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Tree extraction and estimation of walnut structure parameters using airborne LiDAR data / Javier Estornell in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
[article]
Titre : Tree extraction and estimation of walnut structure parameters using airborne LiDAR data Type de document : Article/Communication Auteurs : Javier Estornell, Auteur ; Edyta Hadas, Auteur ; J. Marti, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 102273 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] dendrométrie
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Espagne
[Termes IGN] extraction d'arbres
[Termes IGN] houppier
[Termes IGN] Juglans regia
[Termes IGN] modèle numérique de terrain
[Termes IGN] plantation agricole
[Termes IGN] semis de pointsRésumé : (auteur) The development of new tools based on remote sensing data in agriculture contributes to cost reduction, increased production, and greater profitability. Airborne LiDAR (Light Detection and Ranging) data show a significant potential for geometrically characterizing tree plantations. This study aims to develop a methodology to extract walnut (Juglans regia L.) crowns under leafless conditions using airborne LiDAR data. An original approach based on the alpha-shape algorithm, identification of local maxima, and k-means algorithms is developed to extract the crowns of walnut trees in a plot located in Viver (Eastern Spain) with 192 trees. In addition, stem diameter and volume, crown diameter, total height, and crown height were estimated from cloud metrics and other 2D parameters such as crown area, and diameter derived from LiDAR data. A correct identification was made of 178 trees (92.7%). For structure parameters, the most accurate results were obtained for crown diameter, stem diameter, and stem volume with coefficient of determination values (R2) equal to 0.95, 0.87 and 0.83; and RMSE values of 0.43 m (5.70%), 0.02 m (9.35%) and 0.016 m3 (21.55%), respectively. The models that gave the lowest R2 values were 0.69 for total height and 0.70 for crown height, with RMSE values of 0.84 m (12.4%) and 0.83 m (14.5%), respectively. A suitable definition of the central and lower parts of tree canopies was observed. Results of this study generate valuable information, which can be applied for improving the management of walnut plantations. Numéro de notice : A2021-239 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102273 Date de publication en ligne : 13/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102273 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97265
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102273[article]Accuracy of tree geometric parameters depending on the LiDAR data density / Edyta Hadas in European journal of remote sensing, vol 49 n° 1 (2016)
[article]
Titre : Accuracy of tree geometric parameters depending on the LiDAR data density Type de document : Article/Communication Auteurs : Edyta Hadas, Auteur ; Javier Estornell, Auteur Année de publication : 2016 Article en page(s) : pp 73 - 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] Olea europaea
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) The aim of this study was to compare geometric parameters of olive trees (tree height,crown base height, crown diameters, crown area), using LiDAR data of different densities: 0.5, 3.5 and 9 points m-2. Two strategies were proposed and verified with a focus on raster and raw data analysis. Statistical tests have shown, that for the tree height and crown base height estimation, the choice of strategy was irrelevant, but denser LiDAR data provided more accurate results. The raster analysis strategy applied for sparse and dense LiDAR datasets allowed crown shape to be determined with a similar accuracy which means raster data are useful for estimating other indirect tree parameters. The quality of results was independent from the tree size. Numéro de notice : A2016-833 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.5721/EuJRS20164905 En ligne : http://dx.doi.org/10.5721/EuJRS20164905 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82718
in European journal of remote sensing > vol 49 n° 1 (2016) . - pp 73 - 92[article]