Détail de l'auteur
Auteur Martin Klotz |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Object-based morphological profiles for classification of remote sensing imagery / Christian Geiss in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
[article]
Titre : Object-based morphological profiles for classification of remote sensing imagery Type de document : Article/Communication Auteurs : Christian Geiss, Auteur ; Martin Klotz, Auteur ; Andreas Schmitt, Auteur ; Hannes Taubenböck, Auteur Année de publication : 2016 Article en page(s) : pp 5952 - 5963 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification automatique
[Termes IGN] classification orientée objet
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] morphologie mathématique
[Termes IGN] reconstruction d'imageRésumé : (auteur) Morphological operators (MOs) and their enhancements such as morphological profiles (MPs) are subject to a lively scientific contemplation since they are found to be beneficial for, for example, classification of very high spatial resolution panchromatic, multi-, and hyperspectral imagery. They account for spatial structures with differing magnitudes and, thus, provide a comprehensive multilevel description of an image. In this paper, we introduce the concept of object-based MPs (OMPs) to also encode shape-related, topological, and hierarchical properties of image objects in an exhaustive way. Thereby, we seek to benefit from the so-called object-based image analysis framework by partitioning the original image into objects with a segmentation algorithm on multiple scales. The obtained spatial entities (i.e., objects) are used to aggregate multiple sequences obtained with MOs according to statistical measures of central tendency. This strategy is followed to simultaneously preserve and characterize shape properties of objects and enable both the topological and hierarchical decompositions of an image with respect to the progressive application of MOs. Subsequently, supervised classification models are learned by considering this additionally encoded information. Experimental results are obtained with a random forest classifier with heuristically tuned hyperparameters and a wrapper-based feature selection scheme. We evaluated the results for two test sites of panchromatic WorldView-II imagery, which was acquired over an urban environment. In this setting, the proposed OMPs allow for significant improvements with respect to classification accuracy compared to standard MPs (i.e., obtained by paired sequences of erosion, dilation, opening, closing, opening by top-hat, and closing by top-hat operations). Numéro de notice : A2016-864 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2576978 En ligne : https://doi.org/10.1109/TGRS.2016.2576978 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82899
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 10 (October 2016) . - pp 5952 - 5963[article]