Détail de l'auteur
Auteur Lu Jia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
SAR image change detection based on correlation kernel and multistage extreme learning machine / Lu Jia in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
[article]
Titre : SAR image change detection based on correlation kernel and multistage extreme learning machine Type de document : Article/Communication Auteurs : Lu Jia, Auteur ; Ming Li, Auteur ; Peng Zhang, Auteur ; Yan Wu, Auteur Année de publication : 2016 Article en page(s) : pp 5993 - 6006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] appariement d'images
[Termes IGN] apprentissage automatique
[Termes IGN] détection de changement
[Termes IGN] détection de contours
[Termes IGN] image radar moirée
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] séparateur à vaste margeRésumé : (auteur) Designing a kernel function with good discriminating ability and a highly application-adaptive kernelized classifier is the key of many kernel methods. However, not many kernel functions combining directly the bitemporal images' information are designed specifically for change detection tasks. In addition, extreme learning machine (ELM) has not found wide applications in change detection tasks, even though it is a potential kernel method possessing outstanding approximation and generalization capabilities as well as great classification accuracy and efficiency. Therefore, an approach relying on a difference correlation kernel (DCK) and a multistage ELM (MS-ELM) is proposed in this paper for synthetic aperture radar (SAR) image change detection. First, a DCK function is constructed specifically for change detection by measuring the “distance” between any two pixels. The DCK function depicts the cross-time similarities between couples of bitemporal image patches at any cyclic shifts with a kernel correlation operation and the high-order spatial distances between two differently located pixels with an algebraic subtraction. The DCK function possesses strong noise immunity and good identification of changed areas simultaneously. Second, an MS-ELM classifier is constructed for obtaining the change detection result. In MS-ELM, the hidden nodes and weights between the hidden and output layers are updated stage by stage by improving the kernel functions that compose them. Each stage of the MS-ELM is a standard kernel-ELM, and the DCK function is utilized in the first stage. The regenerative kernel functions incorporate the output spatial-neighborhood information of the previous stage for enhancing remarkably the MS-ELM's discriminating ability and noise resistance. The converged result at the last stage of MS-ELM is the final change detection result. Experiments on real SAR image change detection demonstrate the effectiveness of the DCK function and the MS-ELM algorithm, particularly its good identification of changed areas and strong robustness against noise in SAR images. Numéro de notice : A2016-865 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2578438 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2578438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82901
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 10 (October 2016) . - pp 5993 - 6006[article]