Détail de l'auteur
Auteur Lin Liu |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Orbit error removal in InSAR/MTInSAR with a patch-based polynomial model / Yanan Du in International journal of applied Earth observation and geoinformation, vol 102 (October 2021)
[article]
Titre : Orbit error removal in InSAR/MTInSAR with a patch-based polynomial model Type de document : Article/Communication Auteurs : Yanan Du, Auteur ; Hai Qiang Fu, Auteur ; Lin Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 102438 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interferométrie différentielle
[Termes IGN] jeu de données
[Termes IGN] modèle d'erreur
[Termes IGN] orbitographie
[Termes IGN] transformation polynomialeRésumé : (auteur) The orbit error caused by the inaccuracy of the orbit state vector can lead to fringes in differential interferograms, which can impede the estimation of deformation in differential SAR interferometry (DInSAR) applications. Usually, a set of polynomial coefficients for an entire SAR image is obtained for orbit error removal. However, the orbit error plane is influenced by overfitting in the case that the SAR satellites do not have a precise orbit. In this paper, a patch-based polynomial method is proposed to fit the orbit error plane. The new method divides an SAR image into several overlapping patches in the azimuth and range directions. Every patch obtains its own polynomial coefficients, and an iterative least-square method is used to mosaic the orbit plane. This method is tested and validated via a simulated dataset and then applied to ALOS1/2 PALSAR and Sentinel-1A datasets. The accuracy of deformation is evaluated by in situ GPS datasets. The results show that the patch-based method can fit the orbit phase plane more accurately than the traditional polynomial model with millimeter-level displacement improvement, especially in the margin areas of ALOS1/2 and for the wide-coverage Sentinel-1A datasets. Moreover, in the MTInSAR parameter calculations, the new method improves the accuracy of mean velocity calculations for ALOS1 time series, with a reduction of RMSE from 4.47 mm/yr to 3.17 mm/yr. Additionally, the new method reduces the spatial correlation of the residual topographic phase, with a mean value reduction from 0.32 m to 0.13 m. Numéro de notice : A2021-687 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2021.102438 En ligne : https://doi.org/10.1016/j.jag.2021.102438 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98419
in International journal of applied Earth observation and geoinformation > vol 102 (October 2021) . - n° 102438[article]A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery Type de document : Article/Communication Auteurs : Bo Yang, Auteur ; Lin Liu, Auteur ; Minxuan Lan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1740 - 1764 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] coefficient de corrélation
[Termes IGN] criminalité
[Termes IGN] données spatiotemporelles
[Termes IGN] géostatistique
[Termes IGN] historique des données
[Termes IGN] image NPP-VIIRS
[Termes IGN] krigeage
[Termes IGN] modèle dynamique
[Termes IGN] nuit
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] prédiction
[Termes IGN] prévention des risques
[Termes IGN] prise de vue nocturne
[Termes IGN] test statistique
[Termes IGN] zone urbaineRésumé : (auteur) Accurate crime prediction can help allocate police resources for crime reduction and prevention. There are two popular approaches to predict criminal activities: one is based on historical crime, and the other is based on environmental variables correlated with criminal patterns. Previous research on geo-statistical modeling mainly considered one type of data in space-time domain, and few sought to blend multi-source data. In this research, we proposed a spatio-temporal Cokriging algorithm to integrate historical crime data and urban transitional zones for more accurate crime prediction. Time-series historical crime data were used as the primary variable, while urban transitional zones identified from the VIIRS nightlight imagery were used as the secondary co-variable. The algorithm has been applied to predict weekly-based street crime and hotspots in Cincinnati, Ohio. Statistical tests and Predictive Accuracy Index (PAI) and Predictive Efficiency Index (PEI) tests were used to validate predictions in comparison with those of the control group without using the co-variable. The validation results demonstrate that the proposed algorithm with historical crime data and urban transitional zones increased the correlation coefficient by 5.4% for weekdays and by 12.3% for weekends in statistical tests, and gained higher hit rates measured by PAI/PEI in the hotspots test. Numéro de notice : A2020-475 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1737701 Date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1080/13658816.2020.1737701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95622
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1740 - 1764[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible Fast three-dimensional empirical mode decomposition of hyperspectral images for class-oriented multitask learning / Zhi He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
[article]
Titre : Fast three-dimensional empirical mode decomposition of hyperspectral images for class-oriented multitask learning Type de document : Article/Communication Auteurs : Zhi He, Auteur ; Jun Li, Auteur ; Lin Liu, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 6625 - 6643 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] décomposition d'image
[Termes IGN] image 3DRésumé : (Auteur) In this paper, we propose a fast 3-D empirical mode decomposition (fTEMD) method for hyperspectral images (HSIs) to achieve class-oriented multitask learning (cMTL). The major steps of the proposed method are twofold: 1) fTEMD and 2) cMTL. On the one hand, the traditional empirical mode decomposition is extended to its 3-D version, which naturally treats the HSI as a cube and effectively decomposes the HSI into several 3-D intrinsic mode functions (TIMFs). To accelerate the fTEMD, 3-D Delaunay triangulation is adopted to determine the distances of extrema, whereas separable filters are implemented to generate the envelopes. On the other hand, cMTL is performed on the TIMFs by taking those TIMFs as features of different tasks. The proposed cMTL learns the representation coefficients by taking advantage of the class labels and fully exploiting the information contained in each TIMF. Experiments conducted on three benchmark data sets demonstrate the effectiveness of the proposed method. Numéro de notice : A2016-916 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2587672 En ligne : https://doi.org/10.1109/TGRS.2016.2587672 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83143
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 11 (November 2016) . - pp 6625 - 6643[article]Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification / Zhi He in ISPRS Journal of photogrammetry and remote sensing, vol 121 (November 2016)
[article]
Titre : Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification Type de document : Article/Communication Auteurs : Zhi He, Auteur ; Lin Liu, Auteur Année de publication : 2016 Article en page(s) : pp 11 – 27 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] module d'extensionRésumé : (Auteur) Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2l1,2-norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods. Numéro de notice : A2016--011 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.08.007 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.08.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83873
in ISPRS Journal of photogrammetry and remote sensing > vol 121 (November 2016) . - pp 11 – 27[article]Robust collaborative nonnegative matrix factorization for hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
[article]
Titre : Robust collaborative nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Jun Li, Auteur ; José M. Bioucas-Dias, Auteur ; Antonio J. Plaza, Auteur ; Lin Liu, Auteur Année de publication : 2016 Article en page(s) : pp 6076 - 6090 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] modèle de mélange multilinéaire
[Termes IGN] signature spectraleRésumé : (auteur) Spectral unmixing is an important technique for remotely sensed hyperspectral data exploitation. It amounts to identifying a set of pure spectral signatures, which are called endmembers, and their corresponding fractional, draftrulesabun-dances in each pixel of the hyperspectral image. Over the last years, different algorithms have been developed for each of the three main steps of the spectral unmixing chain: 1) estimation of the number of endmembers in a scene; 2) identification of the spectral signatures of the endmembers; and 3) estimation of the fractional abundance of each endmember in each pixel of the scene. However, few algorithms can perform all the stages involved in the hyperspectral unmixing process. Such algorithms are highly desirable to avoid the propagation of errors within the chain. In this paper, we develop a new algorithm, which is termed robust collaborative nonnegative matrix factorization (R-CoNMF), that can perform the three steps of the hyperspectral unmixing chain. In comparison with other conventional methods, R-CoNMF starts with an overestimated number of endmembers and removes the redundant endmembers by means of collaborative regularization. Our experimental results indicate that the proposed method provides better or competitive performance when compared with other widely used methods. Numéro de notice : A2016-868 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2580702 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2580702 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83025
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 10 (October 2016) . - pp 6076 - 6090[article]