Détail de l'auteur
Auteur Yushi Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks / Yushi Chen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
[article]
Titre : Deep feature extraction and classification of hyperspectral images based on convolutional neural networks Type de document : Article/Communication Auteurs : Yushi Chen, Auteur ; Hanlu Jiang, Auteur ; Chunyang Li, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 6232 - 6251 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection de cible
[Termes IGN] filtrage numérique d'image
[Termes IGN] image hyperspectrale
[Termes IGN] régularisation de Tychonoff
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Due to the advantages of deep learning, in this paper, a regularized deep feature extraction (FE) method is presented for hyperspectral image (HSI) classification using a convolutional neural network (CNN). The proposed approach employs several convolutional and pooling layers to extract deep features from HSIs, which are nonlinear, discriminant, and invariant. These features are useful for image classification and target detection. Furthermore, in order to address the common issue of imbalance between high dimensionality and limited availability of training samples for the classification of HSI, a few strategies such as L2 regularization and dropout are investigated to avoid overfitting in class data modeling. More importantly, we propose a 3-D CNN-based FE model with combined regularization to extract effective spectral-spatial features of hyperspectral imagery. Finally, in order to further improve the performance, a virtual sample enhanced method is proposed. The proposed approaches are carried out on three widely used hyperspectral data sets: Indian Pines, University of Pavia, and Kennedy Space Center. The obtained results reveal that the proposed models with sparse constraints provide competitive results to state-of-the-art methods. In addition, the proposed deep FE opens a new window for further research. Numéro de notice : A2016-869 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2584107 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2584107 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83026
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 10 (October 2016) . - pp 6232 - 6251[article]