Détail de l'auteur
Auteur Luce Fleitout |
Documents disponibles écrits par cet auteur (11)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Data-driven gap filling and spatio-temporal filtering of the GRACE and GRACE-FO records / Louis-Marie Gauer in Journal of geophysical research : Solid Earth, vol 128 n° 5 (May 2023)
[article]
Titre : Data-driven gap filling and spatio-temporal filtering of the GRACE and GRACE-FO records Type de document : Article/Communication Auteurs : Louis-Marie Gauer, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur Année de publication : 2023 Projets : TOSCA HYDROGEODESY / Article en page(s) : n° e2022JB025561 Note générale : bibliographie
This study was supported by the CNES-TOSCA HYDROGEODESY project.Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données GRACE
[Termes IGN] filtrage spatiotemporel
[Termes IGN] traitement de données localisées
[Termes IGN] valeur aberranteRésumé : (auteur) Gravity Recovery And Climate Experiment and Follow On (GRACE/-FO) global monthly measurements of Earth's gravity field have led to significant advances in quantifying mass transfer. However, a significant temporal gap between missions hinders evaluating long-term mass variations. Moreover, instrumental and processing errors translate into large non-physical North-South stripes polluting geophysical signals. We use Multichannel Singular Spectrum Analysis (M-SSA) to overcome both issues by exploiting spatio-temporal information of Level-2 GRACE/-FO solutions, filtered using the DDK7 decorrelation and a new complementary filter, built based on the residual noise between fully processed data and a parametric fit to observations. Using an iterative M-SSA on Equivalent Water Height (EWH) time series processed by Center of Space Research, GeoForschungsZentrum, Institute of Geodesy at Graz University of Technology, and Jet Propulsion Laboratory, we replace missing data and outliers to obtain a combined evenly sampled solution. Then, we apply M-SSA to retrieve common signals between each EWH time series and its same-latitude neighbors to further reduce residual spatially uncorrelated noise. Comparing GRACE/-FO M-SSA solution with Satellite Laser Ranging and Swarm low-degree Earth's gravity field and hydrological model demonstrates its ability to satisfyingly fill missing observations. Our solution achieves a noise level comparable to mass concentration (mascon) solutions over oceans (3.0 mm EWH), without requiring a priori information nor regularization. While short-wavelength signals are challenging to capture using highly filtered spherical harmonics or mascons solutions, we show that our technique efficiently recovers localized mass variations using well-documented mass transfers associated with reservoir impoundments. Numéro de notice : A2023-096 Affiliation des auteurs : UMR IPGP-Géod (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2022JB025561 En ligne : https://doi.org/10.1029/2022JB025561 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103213
in Journal of geophysical research : Solid Earth > vol 128 n° 5 (May 2023) . - n° e2022JB025561[article]Understanding the geodetic signature of large aquifer systems: Example of the Ozark plateaus in central United States / Stacy Larochelle in Journal of geophysical research : Solid Earth, vol 127 n° 3 (March 2022)
[article]
Titre : Understanding the geodetic signature of large aquifer systems: Example of the Ozark plateaus in central United States Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Adriano Gualandi, Auteur ; Laurent Longuevergne, Auteur ; Paul Rebischung , Auteur ; Sophie Violette, Auteur ; Jean-Philippe Avouac, Auteur Année de publication : 2022 Article en page(s) : n° e2021JB023097 Note générale : bibliographie - financial support :
PGSD‐3‐517078‐2018, Natural Sciences and Engineering Research Council of Canada
2019‐2020 STEM Chateaubriand Fellowship, Office for Science and Technology of the Embassy of France in the United States
IPGP contribution #4232, Institut de Physique du Globe de ParisLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse en composantes indépendantes
[Termes IGN] aquifère
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] données GRACE
[Termes IGN] élasticité
[Termes IGN] Etats-Unis
[Termes IGN] hydrogéologie
[Termes IGN] surcharge hydrologiqueRésumé : (auteur) The continuous redistribution of water involved in the hydrologic cycle leads to deformation of the solid Earth. On a global scale, this deformation is well explained by the loading imposed by hydrological mass variations and can be quantified to first order with space-based gravimetric and geodetic measurements. At the regional scale, however, aquifer systems also undergo poroelastic deformation in response to groundwater fluctuations. Disentangling these related but distinct 3D deformation fields from geodetic time series is essential to accurately invert for changes in continental water mass, to understand the mechanical response of aquifers to internal pressure changes as well as to correct time series for these known effects. Here, we demonstrate a methodology to accomplish this task by considering the example of the well-instrumented Ozark Plateaus Aquifer System (OPAS) in the central United States. We begin by characterizing the most important sources of groundwater level variations in the spatially heterogeneous piezometer dataset using an Independent Component Analysis. Then, to estimate the associated poroelastic displacements, we project geodetic time series corrected for hydrological loading effects onto the dominant groundwater temporal functions. We interpret the extracted displacements in light of analytical solutions and a 2D model relating groundwater level variations to surface displacements. In particular, the relatively low estimates of elastic moduli inferred from the poroelastic displacements and groundwater fluctuations may be indicative of aquifer layers with a high fracture density. Our findings suggest that OPAS undergoes significant poroelastic deformation, including highly heterogeneous horizontal poroelastic displacements. Numéro de notice : A2022-944 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2021JB023097 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1029/2021JB023097 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103155
in Journal of geophysical research : Solid Earth > vol 127 n° 3 (March 2022) . - n° e2021JB023097[article]Monitoring and modeling of the Sacramento Valley aquifer (California) using geodetic and piezometric measurements / Stacy Larochelle (2022)
Titre : Monitoring and modeling of the Sacramento Valley aquifer (California) using geodetic and piezometric measurements Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Manon Dalaison, Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Laurent Longuevergne, Auteur ; Donald F. Argus, Auteur ; Romain Jolivet, Auteur ; Jean-Philippe Avouac, Auteur Editeur : Washington DC [Maryland - Etats-Unis] : American Geophysical Union AGU Année de publication : 2022 Conférence : AGU 2022, Fall meeting, American Geophysical Union Fall Meeting 12/12/2022 16/12/2022 Chicago Illinois - Etats-Unis Importance : n° NS23A-06 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] aquifère
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] données GNSS
[Termes IGN] hydrogéologie
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Changes in groundwater levels associated with hydroclimatic variations and anthropogenic water extraction can deform the solid Earth, both elastically and inelastically. Satellite-based geodetic techniques which measure the Earth’s surface displacements can thus be used to track changing conditions in aquifer systems. However, accurately extracting groundwater-induced deformation signals still poses a challenge as geodetic techniques like GNSS and InSAR also record noise, systematic errors and other sources of deformation. In this study, we take advantage of the relatively dense in situ groundwater monitoring network of the Sacramento Valley aquifer in California to constrain its deformation and hydromechanical properties. We start by characterizing the main seasonal and multiannual fluctuations in groundwater levels with an Independent Component Analysis (ICA) and exploit the resulting temporal signature to extract the associated deformation field from GNSS and InSAR time series. We then develop a poroelastic model of the aquifer to invert for its elastic storage capacity and estimate the respective contributions of elastic and inelastic processes to long-term subsidence. Our modeling also suggests that depth-dependent elastic properties are necessary to explain the spatial distribution of horizontal poroelastic displacements measured by GNSS. This work has important implications for the sustainable management of heavily-stressed Californian aquifers but also serves as a calibration between in situ and remote sensing techniques, which is essential for the successful deployment of satellite-based groundwater monitoring in areas with sparse field-based instrumentation. Numéro de notice : C2022-053 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1093662 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103158 Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States / Stacy Larochelle (2021)
Titre : Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Adriano Gualandi, Auteur ; Laurent Longuevergne, Auteur ; Paul Rebischung , Auteur ; Sophie Violette, Auteur ; Jean-Philippe Avouac, Auteur Editeur : Washington DC [Etats-Unis] : Earth and Space Science Open Archive ESSOAr Année de publication : 2021 Projets : 1-Pas de projet / Importance : 29 p. Note générale : bibliographie
soumis au Journal of Geophysical Research - Solid EarthLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] aquifère
[Termes IGN] Arkansas (Etats-Unis)
[Termes IGN] déformation de la croute terrestre
[Termes IGN] élasticité
[Termes IGN] Kansas (Etats-Unis ; état)
[Termes IGN] masse d'eau
[Termes IGN] Missouri (Etats-Unis)
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] série temporelle
[Termes IGN] surcharge hydrologiqueRésumé : (auteur) The continuous redistribution of water mass involved in the hydrologic cycle leads to deformation of the solid Earth. On a global scale, this deformation is well explained by redistribution in surface loading and can be quantified to first order with space-based gravimetric and geodetic measurements. At the regional scale, however, aquifer systems also undergo poroelastic deformation in response to groundwater fluctuations. Disentangling these related but distinct 3D deformation fields from geodetic time series is essential to accurately invert for changes in continental water mass, to understand the mechanical response of aquifers to internal pressure changes as well as to correct time series for these known effects. Here, we demonstrate a methodology to accomplish this task by considering the example of the well-instrumented Ozark Plateaus Aquifer System (OPAS) in central United States. We begin by characterizing the most important sources of signal in the spatially heterogeneous groundwater level dataset using an Independent Component Analysis. Then, to estimate the associated poroelastic displacements, we project geodetic time series corrected for surface loading effects onto orthogonalized versions of the groundwater temporal functions. We interpret the extracted displacements in light of analytical solutions and a 2D model relating groundwater level variations to surface displacements. In particular, the relatively low estimates of elastic moduli inferred from the poroelastic displacements and groundwater fluctuations may be indicative of surficial layers with a high fracture density. Our findings suggest that OPAS undergoes significant poroelastic deformation, including highly heterogeneous horizontal poroelastic displacements. Numéro de notice : P2021-006 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Preprint nature-HAL : Préprint DOI : 10.1002/essoar.10507870.1 Date de publication en ligne : 02/09/2021 En ligne : https://doi.org/10.1002/essoar.10507870.1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98994 Data-adaptive spatio-temporal filtering of GRACE data / Paoline Prevost in Geophysical journal international, vol 219 n° 3 (December 2019)
[article]
Titre : Data-adaptive spatio-temporal filtering of GRACE data Type de document : Article/Communication Auteurs : Paoline Prevost, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Eric Calais, Auteur ; Damian Walwer, Auteur ; Tonie M. van Dam, Auteur ; Michael Ghil, Auteur Année de publication : 2019 Projets : 2-Pas d'info accessible - article non ouvert / Article en page(s) : pp 2034 - 2055 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] analyse de spectre singulier
[Termes IGN] données géophysiques
[Termes IGN] données GRACE
[Termes IGN] filtrage spatiotemporel
[Termes IGN] harmonique sphériqueRésumé : (auteur) Measurements of the spatio-temporal variations of Earth’s gravity field from the Gravity Recovery and Climate Experiment (GRACE) mission have led to new insights into large spatial mass redistribution at secular, seasonal and subseasonal timescales. GRACE solutions from various processing centres, while adopting different processing strategies, result in rather coherent estimates. However, these solutions also exhibit random as well as systematic errors, with specific spatial patterns in the latter.
In order to dampen the noise and enhance the geophysical signals in the GRACE data, we propose an approach based on a data-driven spatio-temporal filter, namely the Multichannel Singular Spectrum Analysis (M-SSA). M-SSA is a data-adaptive, multivariate, and non-parametric method that simultaneously exploits the spatial and temporal correlations of geophysical fields to extract common modes of variability.
We perform an M-SSA analysis on 13 yr of GRACE spherical harmonics solutions from five different processing centres in a simultaneous setup. We show that the method allows us to extract common modes of variability between solutions, while removing solution-specific spatio-temporal errors that arise from the processing strategies. In particular, the method efficiently filters out the spurious north–south stripes, which are caused in all likelihood by aliasing, due to the imperfect geophysical correction models and low-frequency noise in measurements.
Comparison of the M-SSA GRACE solution with mass concentration (mascons) solutions shows that, while the former remains noisier, it does retrieve geophysical signals masked by the mascons regularization procedure.Numéro de notice : A2019-276 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/gji/ggz409 Date de publication en ligne : 19/09/2019 En ligne : https://doi.org/10.1093/gji/ggz409 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95381
in Geophysical journal international > vol 219 n° 3 (December 2019) . - pp 2034 - 2055[article]Toward a global horizontal and vertical elastic load deformation model derived from GRACE and GNSS station position time series / Kristel Chanard in Journal of geophysical research : Solid Earth, vol 123 n° 4 (April 2018)PermalinkConstraints on transient viscoelastic rheology of the asthenosphere from seasonal deformation / Kristel Chanard in Geophysical research letters, vol 45 n° 5 (15 March 2018)PermalinkComparing non-linear geocenter motion derived from GNSS and SLR observations corrected for loading and thermoelastic deformation / Kristel Chanard (2018)PermalinkDéformation saisonnière de la Terre : observations, modélisations et implications / Kristel Chanard (2018)PermalinkInverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies / Lambert Caron in Geophysical journal international, vol 209 n° 2 (May 2017)PermalinkEvidence for postglacial signatures in gravity gradients: A clue in lower mantle viscosity / Laurent Métivier in Earth and planetary science letters, vol 452 (October 2016)Permalink