Détail de l'auteur
Auteur Minh-Tan Pham |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Change detection between SAR images using a pointwise approach and graph theory / Minh-Tan Pham in IEEE Transactions on geoscience and remote sensing, vol 54 n° 4 (April 2016)
[article]
Titre : Change detection between SAR images using a pointwise approach and graph theory Type de document : Article/Communication Auteurs : Minh-Tan Pham, Auteur ; Grégoire Mercier, Auteur ; Julien Michel, Auteur Année de publication : 2016 Article en page(s) : pp 2020 - 2032 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit rose
[Termes IGN] classification pixellaire
[Termes IGN] détection de changement
[Termes IGN] graphe
[Termes IGN] image radar
[Termes IGN] image radar moirée
[Termes IGN] relation topologique
[Termes IGN] traitement du signal
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) This paper investigates the problem of change detection in multitemporal synthetic aperture radar (SAR) images. Our motivation is to avoid using a large-size dense neighborhood around each pixel to measure its change level, which is usually considered by classical methods in order to perform their accurate detectors. Therefore, we propose to develop a pointwise approach to detect land-cover changes between two SAR images employing the principle of signal processing on graphs. First, a set of characteristic points is extracted from one of the two images to capture the image's significant contextual information. A weighted graph is then constructed to encode the interaction among these keypoints and hence capture the local geometric structure of this first image. With regard to this graph, the coherence of the information carried by the two images is considered for measuring changes between them. In other words, the change level will depend on how much the second image still conforms to the graph structure constructed from the first image. Additionally, due to the presence of speckle noise in SAR imaging, the log-ratio operator will be exploited to perform the image comparison measure. Experimental results performed on real SAR images show the effectiveness of the proposed algorithm, in terms of detection performance and computational complexity, compared to classical methods. Numéro de notice : A2016-838 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2493730 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2493730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82882
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 4 (April 2016) . - pp 2020 - 2032[article]Pointwise approach for texture analysis and characterization from very high resolution remote sensing images / Minh-Tan Pham (2016)
Titre : Pointwise approach for texture analysis and characterization from very high resolution remote sensing images Type de document : Thèse/HDR Auteurs : Minh-Tan Pham, Auteur ; Grégoire Mercier, Directeur de thèse Editeur : Université Bretagne Loire Année de publication : 2016 Importance : 177 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de Telecom Bretagne, Mention : Sciences et Technologies de l'Information et de la Communication, en Informatique Traitement des imagesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification
[Termes IGN] classification pixellaire
[Termes IGN] covariance
[Termes IGN] détection de changement
[Termes IGN] image à très haute résolution
[Termes IGN] image optique
[Termes IGN] image radar
[Termes IGN] matrice de covariance
[Termes IGN] segmentation d'image
[Termes IGN] texture d'image
[Termes IGN] théorie des graphes
[Termes IGN] viticultureIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis work proposes a novel pointwise approach for texture analysis in the scope of very high resolution (VHR) remote sensing imagery. This approach takes into consideration only characteristic pixels, not all pixels of the image, to represent and characterize textural features. Due to the fact that increasing the spatial resolution of satellite sensors leads to the lack of stationarity hypothesis in the acquired images, such an approach becomes relevant since only the interaction and characteristics of keypoints are exploited. Moreover, as this technique does not need to consider all pixels inside the image like classical dense approaches, it is more capable to deal with large-size image data offered by VHR remote sensing acquisition systems. In this work, our pointwise strategy is performed by exploiting the local maximum and local minimum pixels (in terms of intensity) extracted from the image. It is integrated into several texture analysis frameworks with the help of different techniques and methods such as the graph theory, the covariance-based approach, the geometric distance measurement, etc. As a result, a variety of texture-based applications using remote sensing data (both VHR optical and radar images) are tackled such as image retrieval, segmentation, classification, and change detection, etc. By performing dedicated experiments to each thematic application, the effectiveness and relevance of the proposed approach are confirmed and validated. Note de contenu : I- Introduction
II- Pointwise approach with graph theory
III- Pointwise approach with structural features
IV ConclusionNuméro de notice : 25815 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique Traitement des images : Telecom Bretagne : 2016 nature-HAL : Thèse DOI : sans En ligne : https://tel.archives-ouvertes.fr/tel-01464333v2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95080