Détail de l'auteur
Auteur Abdul Nurunnabi |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Robust approach for urban road surface extraction using mobile laser scanning 3D point clouds / Abdul Nurunnabi (2022)
Titre : Robust approach for urban road surface extraction using mobile laser scanning 3D point clouds Type de document : Article/Communication Auteurs : Abdul Nurunnabi, Auteur ; Felix Norman Teferle, Auteur ; Roderik Lindenbergh, Auteur ; J. Li, Auteur ; Sisi Zlatanova, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 59 - 66 Note générale : bibliographie
This study is supported by the Project 2019-05-030-24, SOLSTICE - Programme Fonds Européen de Développment Régional (FEDER)/Ministère de l’Economie of the G. D. of LuxembourgLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de couche
[Termes IGN] méthode robuste
[Termes IGN] navigation autonome
[Termes IGN] régression
[Termes IGN] réseau routier
[Termes IGN] sécurité routière
[Termes IGN] semis de points
[Termes IGN] véhicule sans piloteRésumé : (auteur) Road surface extraction is crucial for 3D city analysis. Mobile laser scanning (MLS) is the most appropriate data acquisition system for the road environment because of its efficient vehicle-based on-road scanning opportunity. Many methods are available for road pavement, curb and roadside way extraction. Most of them use classical approaches that do not mitigate problems caused by the presence of noise and outliers. In practice, however, laser scanning point clouds are not free from noise and outliers, and it is apparent that the presence of a very small portion of outliers and noise can produce unreliable and non-robust results. A road surface usually consists of three key parts: road pavement, curb and roadside way. This paper investigates the problem of road surface extraction in the presence of noise and outliers, and proposes a robust algorithm for road pavement, curb, road divider/islands, and roadside way extraction using MLS point clouds. The proposed algorithm employs robust statistical approaches to remove the consequences of the presence of noise and outliers. It consists of five sequential steps for road ground and non-ground surface separation, and road related components determination. Demonstration on two different MLS data sets shows that the new algorithm is efficient for road surface extraction and for classifying road pavement, curb, road divider/island and roadside way. The success can be rated in one experiment in this paper, where we extract curb points; the results achieve 97.28%, 100% and 0.986 of precision, recall and Matthews correlation coefficient, respectively. Numéro de notice : C2022-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-59-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-59-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100845 Robust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data / Abdul Nurunnabi in IEEE Transactions on geoscience and remote sensing, vol 54 n° 4 (April 2016)
[article]
Titre : Robust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data Type de document : Article/Communication Auteurs : Abdul Nurunnabi, Auteur ; Geoff West, Auteur ; David Belton, Auteur Année de publication : 2016 Article en page(s) : pp 2181 - 2193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] ajustement de paramètres
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse comparative
[Termes IGN] analyse de données
[Termes IGN] extraction de points
[Termes IGN] régression
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone urbaineRésumé : (Auteur) This paper introduces robust algorithms for extracting the ground points in laser scanning 3-D point cloud data. Global polynomial functions have been used for filtering algorithms for point cloud data; however, it is not suitable as it may lead to bias for the filtering algorithms and can cause misclassification errors when many different objects are present. In this paper, robust statistical approaches are coupled with locally weighted 2-D regression that fits without any predefined global function for the variables of interest. Algorithms are performed iteratively on 2-D profiles: x - z and y - z. The z (elevation) values are robustly down weighted based on the residuals for the fitted points. The new set of down-weighted z values, along with the corresponding x (or y) values, is used to get a new fit for the lower surface level. The process of fitting and down weighting continues until the difference between two consecutive fits is insignificant. The final fit is the required ground level, and the ground surface points are those that fall within the ground level and the level after adding some threshold value with the ground level for z values. Experimental results are compared with the recently proposed segmentation method through simulated and real mobile laser scanning point clouds from urban areas that include many objects that appear in road scenes such as short walls, large buildings, electric poles, signposts, and cars. Results show that the proposed robust methods efficiently extract ground surface points with better than 97% accuracy. Numéro de notice : A2016-840 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2496972 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2496972 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82884
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 4 (April 2016) . - pp 2181 - 2193[article]