Détail de l'auteur
Auteur Maximilian Brell |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction / Maximilian Brell in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction Type de document : Article/Communication Auteurs : Maximilian Brell, Auteur ; Karl Segl, Auteur ; Luis Guanter, Auteur ; Bodo Bookhagen, Auteur Année de publication : 2019 Article en page(s) : pp 200 - 214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] capteur hyperspectral
[Termes IGN] classification orientée objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] impulsion laser
[Termes IGN] niveau de détail
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Remote Sensing technologies allow to map biophysical, biochemical, and earth surface parameters of the land surface. Of especial interest for various applications in environmental and urban sciences is the combination of spectral and 3D elevation information. However, those two data streams are provided separately by different instruments, namely airborne laser scanner (ALS) for elevation and a hyperspectral imager (HSI) for high spectral resolution data. The fusion of ALS and HSI data can thus lead to a single data entity consistently featuring rich structural and spectral information. In this study, we present the application of fusing the first pulse return information from ALS data at a sub-decimeter spatial resolution with the lower-spatial resolution hyperspectral information available from the HSI into a hyperspectral point cloud (HSPC). During the processing, a plausible hyperspectral spectrum is assigned to every first-return ALS point. We show that the complementary implementation of spectral and 3D information at the point-cloud scale improves object-based classification and information extraction schemes. This improvements have great potential for numerous land-cover mapping and environmental applications. Numéro de notice : A2019-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.022 Date de publication en ligne : 06/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.022 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92448
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 200 - 214[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Hyperspectral and lidar intensity data fusion : A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration / Maximilian Brell in IEEE Transactions on geoscience and remote sensing, vol 55 n° 5 (May 2017)
[article]
Titre : Hyperspectral and lidar intensity data fusion : A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration Type de document : Article/Communication Auteurs : Maximilian Brell, Auteur ; Karl Segl, Auteur ; Luis Guanter, Auteur ; Bodo Bookhagen, Auteur Année de publication : 2017 Article en page(s) : pp 2799 - 2810 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] anisotropie
[Termes IGN] correction radiométrique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage croisé
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] intensité lumineuse
[Termes IGN] réflectance spectraleRésumé : (Auteur) The fusion of hyperspectral imaging (HSI) sensor and airborne lidar scanner (ALS) data provides promising potential for applications in environmental sciences. Standard fusion approaches use reflectance information from the HSI and distance measurements from the ALS to increase data dimensionality and geometric accuracy. However, the potential for data fusion based on the respective intensity information of the complementary active and passive sensor systems is high and not yet fully exploited. Here, an approach for the rigorous illumination correction of HSI data, based on the radiometric cross-calibrated return intensity information of ALS data, is presented. The cross calibration utilizes a ray tracing-based fusion of both sensor measurements by intersecting their particular beam shapes. The developed method is capable of compensating for the drawbacks of passive HSI systems, such as cast and cloud shadowing effects, illumination changes over time, across track illumination, and partly anisotropy effects. During processing, spatial and temporal differences in illumination patterns are detected and corrected over the entire HSI wavelength domain. The improvement in the classification accuracy of urban and vegetation surfaces demonstrates the benefit and potential of the proposed HSI illumination correction. The presented approach is the first step toward the rigorous in-flight fusion of passive and active system characteristics, enabling new capabilities for a variety of applications. Numéro de notice : A2017-469 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2654516 En ligne : https://doi.org/10.1109/TGRS.2017.2654516 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86392
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 5 (May 2017) . - pp 2799 - 2810[article]Improving sensor fusion : a parametric method for the geometric coalignment of airborne hyperspectral and lidar data / Maximilian Brell in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
[article]
Titre : Improving sensor fusion : a parametric method for the geometric coalignment of airborne hyperspectral and lidar data Type de document : Article/Communication Auteurs : Maximilian Brell, Auteur ; Christian Rogass, Auteur ; Karl Segl, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 3460 - 3474 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] alignement semi-dirigé
[Termes IGN] appariement géométrique
[Termes IGN] données lidar
[Termes IGN] image aérienne
[Termes IGN] image hyperspectrale
[Termes IGN] image multicapteur
[Termes IGN] points homologues
[Termes IGN] superposition d'images
[Termes IGN] télémétrie laser aéroportéRésumé : (Auteur) Synergistic applications based on integrated hyperspectral and lidar data are receiving a growing interest from the remote-sensing community. A prerequisite for the optimum sensor fusion of hyperspectral and lidar data is an accurate geometric coalignment. The simple unadjusted integration of lidar elevation and hyperspectral reflectance causes a substantial loss of information and does not exploit the full potential of both sensors. This paper presents a novel approach for the geometric coalignment of hyperspectral and lidar airborne data, based on their respective adopted return intensity information. The complete approach incorporates ray tracing and subpixel procedures in order to overcome grid inherent discretization. It aims at the correction of extrinsic and intrinsic (camera resectioning) parameters of the hyperspectral sensor. In additional to a tie-point-based coregistration, we introduce a ray-tracing-based back projection of the lidar intensities for area-based cost aggregation. The approach consists of three processing steps. First is a coarse automatic tie-point-based boresight alignment. The second step coregisters the hyperspectral data to the lidar intensities. Third is a parametric coalignment refinement with an area-based cost aggregation. This hybrid approach of combining tie-point features and area-based cost aggregation methods for the parametric coregistration of hyperspectral intensity values to their corresponding lidar intensities results in a root-mean-square error of 1/3 pixel. It indicates that a highly integrated and stringent combination of different coalignment methods leads to an improvement of the multisensor coregistration. Numéro de notice : A2016-855 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2518930 En ligne : https://doi.org/10.1109/TGRS.2016.2518930 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82994
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 6 (June 2016) . - pp 3460 - 3474[article]