Détail de l'auteur
Auteur Zhigang Pan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fusion of LiDAR orthowaveforms and hyperspectral imagery for shallow river bathymetry and turbidity estimation / Zhigang Pan in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
[article]
Titre : Fusion of LiDAR orthowaveforms and hyperspectral imagery for shallow river bathymetry and turbidity estimation Type de document : Article/Communication Auteurs : Zhigang Pan, Auteur ; Craig L. Glennie, Auteur ; Juan Carlos Fernandez-Diaz, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 4165 - 4177 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] bathymétrie
[Termes IGN] données lidar
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] profondeurRésumé : (Auteur) We propose an approach to voxelize bathymetric full-waveform LiDAR (Light Detection and Ranging) to generate orthowaveforms and use them to estimate shallow water bathymetry and turbidity with a nonparametric support vector regression (SVR) method. Two distinct shallow rivers were investigated ranging from clear to turbid water; hyperspectral imagery and traditional full-waveform LiDAR processing were also investigated as a baseline for comparison with the proposed orthowaveform strategy. The orthowaveform showed significant correlation to water depth in both scenarios and outperformed hyperspectral imagery for water depth estimation in more turbid water. The orthowaveforms showed similar performance to full-waveform LiDAR point observations for bathymetry estimation in clear water and outperformed the bathymetry performance of full-waveform processing in turbid water. The orthowaveforms also showed similar performance to hyperspectral imagery for predicting water turbidity in turbid water, with a root mean square error (RMSE) of 1.32 NTU. The fusion of both hyperspectral imagery and orthowaveforms was also investigated and gave superior performance to using either data set alone. The fused data set was able to estimate depth in clear and turbid water with an RMSE of 10 and 21 cm, respectively, and turbidity with an RMSE of 1.16 NTU. Numéro de notice : A2016-880 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2538089 En ligne : https://doi.org/10.1109/TGRS.2016.2538089 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83043
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 7 (July 2016) . - pp 4165 - 4177[article]