Détail de l'auteur
Auteur Antonio Pepe |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Geospatial analyses of Earth observation (EO) data Type de document : Monographie Auteurs : Antonio Pepe, Éditeur scientifique ; Qing Zhao, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2019 Importance : 136 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-1-78984-584-6 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aérosol
[Termes IGN] analyse spatiale
[Termes IGN] bassin hydrographique
[Termes IGN] bruit (théorie du signal)
[Termes IGN] cartographie géologique
[Termes IGN] changement climatique
[Termes IGN] couleur (variable spectrale)
[Termes IGN] détection de changement
[Termes IGN] données environnementales
[Termes IGN] image hyperspectrale
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] Italie
[Termes IGN] lac
[Termes IGN] Malawi
[Termes IGN] minéral
[Termes IGN] observation de la Terre
[Termes IGN] risque naturel
[Termes IGN] télédétection spatiale
[Termes IGN] transformation de coordonnées
[Termes IGN] utilisation du solRésumé : (Editeur) Earth Observation and Geospatial Analysis presents current research related to the observation of Earth with sensors operating at various wavelengths. The book describes the use of remote sensing technologies for detecting and monitoring Earth's environmental changes (including surface and atmosphere) and its modifications over time. Chapters cover different research aspects in the framework of remote sensing with a particular emphasis on the use of hyperspectral and optical imageries. The presented experiments concern the study of soil properties, the analysis of land use/land changes, the analysis of bio-aerosols as well as the color of water, the investigation of the scar and samples of a cosmic meteoritic impact, and the theoretical treatment of the operation of spatial coordinate transformation in noisy environments. Overall, this book provides an overview of the adopted methodologies for the accomplishment of geospatial analyses to identify environmental changes due to climate change and natural phenomena. Note de contenu : 1. Application of Topographic Analyses for Mapping Spatial Patterns of Soil Properties
2. Clay Minerals Mapping from Imaging Spectroscopy
3. The Impact of Land Use and Land Cover Changes on the Nkula Dam in the Middle Shire River Catchment, Malawi
4. Advanced Methods for Spatial Analysis of Bioaerosol Long-Range Transport Processes
5. The Color of Water from Space: A Case Study for Italian Lakes from Sentinel-2
6. Bacubirito: An Outstanding Cosmic Sample on Earth
7. Spatial Coordinate Transformations with Noisy DataNuméro de notice : 26673 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.74888 Date de publication en ligne : 27/11/2019 En ligne : https://www.intechopen.com/books/7304 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98967 Spaceborne synthetic aperture radar data focusing on multicore-based architectures / Pasquale Imperatore in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : Spaceborne synthetic aperture radar data focusing on multicore-based architectures Type de document : Article/Communication Auteurs : Pasquale Imperatore, Auteur ; Antonio Pepe, Auteur ; Riccardo Lanari, Auteur Année de publication : 2016 Article en page(s) : pp 4712 - 4731 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] architecture orientée services
[Termes IGN] données multisources
[Termes IGN] focalisation
[Termes IGN] image radar moirée
[Termes IGN] implémentation (informatique)
[Termes IGN] partage de données localisées
[Termes IGN] processeur multicoeurRésumé : (Auteur) This paper describes a general-purpose parallel scheme for efficiently focusing synthetic aperture radar (SAR) data on multicore-based shared-memory architectures. The rationale of the proposed tiling-based parallel focusing model is first discussed, and then, its implementation structure is illustrated. The adopted parallel solution, which is based on a canonical processing pattern, exploits a segmented-block-based approach and works successfully on data acquired by different spaceborne SAR platforms. Insofar as a significant portion of the focusing algorithm is amenable to tiling, our approach decomposes the problem into simpler subproblems of the same type, also providing a suitable mechanism to explicitly control the granularity of computation through the proper specification of the tiling at the different stages of the algorithm itself. Relevant implementation makes use of multithreading and high-performance libraries. Achievable performances are then experimentally investigated by quantifying the benefit of the parallelism incorporated into the prototype solution, thus demonstrating the validity of our approach. Accordingly, canonical performance metrics have been evaluated, and the pertinent scalability has been examined on different multicore architectures. Furthermore, in order to emphasize the practical ability of the proposed parallel model implementation to efficiently deal with data of different SAR sensors, a performance analysis has been carried out in different realistic scenarios including data acquired by the Envisat/ASAR, RADARSAT-1, and COSMO-SkyMed platforms. Numéro de notice : A2016-889 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2550201 En ligne : https://doi.org/10.1109/TGRS.2016.2550201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83069
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4712 - 4731[article]