Détail de l'auteur
Auteur Zhen Wang |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Dense stereo matching strategy for oblique images that considers the plane directions in urban areas / Jianchen Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
[article]
Titre : Dense stereo matching strategy for oblique images that considers the plane directions in urban areas Type de document : Article/Communication Auteurs : Jianchen Liu, Auteur ; Linjing Zhang, Auteur ; Zhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 5109 - 5116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] appariement dense
[Termes IGN] appariement semi-global
[Termes IGN] bati
[Termes IGN] carte de profondeur
[Termes IGN] corrélation épipolaire dense
[Termes IGN] distorsion d'image
[Termes IGN] erreur moyenne quadratique
[Termes IGN] image oblique
[Termes IGN] perspective
[Termes IGN] planéité
[Termes IGN] zone urbaineRésumé : (auteur) The perspective distortion of oblique images has a substantial impact on dense matching, i.e., it reduces the matching precision. In this article, a strategy of dense matching in which the object plane direction is considered is proposed. According to many regular planes in urban areas, epipolar rectification with minimum distortions relative to the selected reference planes can be generated. The matching results of epipolar images relative to various reference planes are weighted and fused into a single depth map, which is a better matching result. The experimental results demonstrate that the perspective distortion has a substantial influence on the dense matching performance. The root-mean-square error (RMSE) of the flatness for horizontal objects is increased by approximately 30%, and the RMSE of the flatness for façades is increased by approximately 40%. Hence, the proposed matching strategy, in which the object plane is considered, can effectively improve the matching results. Numéro de notice : A2020-394 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2972312 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2972312 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95390
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 5109 - 5116[article]A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
[article]
Titre : A deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification Type de document : Article/Communication Auteurs : Zhen Wang, Auteur ; Liqiang Zhang, Auteur ; Liang Zhang, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 4594 - 4604 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] arbre aléatoire
[Termes IGN] classification par réseau neuronal
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] méthode robuste
[Termes IGN] Perceptron multicouche
[Termes IGN] pondération
[Termes IGN] précision de la classification
[Termes IGN] scène urbaine
[Termes IGN] semis de pointsMots-clés libres : deep neural network with spatial pooling (DNNSP) Résumé : (Auteur) The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. Most works in deep learning have achieved a great success on regular input representations, but they are hard to be directly applied to classify point clouds due to the irregularity and inhomogeneity of the data. In this paper, a deep neural network with spatial pooling (DNNSP) is proposed to classify large-scale point clouds without rasterization. The DNNSP first obtains the point-based feature descriptors of all points in each point cluster. The distance minimum spanning tree-based pooling is then applied in the point feature representation to describe the spatial information among the points in the point clusters. The max pooling is next employed to aggregate the point-based features into the cluster-based features. To assure the DNNSP is invariant to the point permutation and sizes of the point clusters, the point-based feature representation is determined by the multilayer perception (MLP) and the weight sharing for each point is retained, which means that the weight of each point in the same layer is the same. In this way, the DNNSP can learn the features of points scaled from the entire regions to the centers of the point clusters, which makes the point cluster-based feature representations robust and discriminative. Finally, the cluster-based features are input to another MLP for point cloud classification. We have evaluated qualitatively and quantitatively the proposed method using several airborne laser scanning and terrestrial laser scanning point cloud data sets. The experimental results have demonstrated the effectiveness of our method in improving classification accuracy. Numéro de notice : A2018-471 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2829625 Date de publication en ligne : 22/05/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2829625 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91253
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 8 (August 2018) . - pp 4594 - 4604[article]A local structure and direction-aware optimization approach for three-dimensional tree modeling / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
[article]
Titre : A local structure and direction-aware optimization approach for three-dimensional tree modeling Type de document : Article/Communication Auteurs : Zhen Wang, Auteur ; Liqiang Zhang, Auteur ; Tian Fang, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 4749 - 4757 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] optimisation (mathématiques)
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] squelettisationRésumé : (Auteur) Modeling 3-D trees from terrestrial laser scanning (TLS) point clouds remains a challenging task for several well-known reasons, including their complex structure and severe occlusions. In order to accurately reconstruct 3-D tree models from TLS point clouds that typically suffer from significant occlusions, in this paper, a novel local structure and direction-aware approach is presented to successfully complete missing structures of trees. In this method, we first extract the coarse tree skeleton from the input point cloud, and thus, the branch dominant direction and the point density of each branch are obtained. By a skeleton-based Laplacian algorithm, the point cloud is further shrunk into a skeleton point cloud to highlight the branch dominant direction of each branch. For obtaining even more accurate point densities, a dictionary-based algorithm is utilized to learn and reconstruct the local structure. Finally, the branch dominant direction and point density are integrated into an iterative optimization process to recover the missing data. Extensive experimental results have shown that the proposed method is very robust to incomplete data sets, and it is capable of accurately reconstructing 3-D trees, which are partially, or even to a large extent, missing from the input point cloud. Numéro de notice : A2016-890 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2551286 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2551286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83070
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 8 (August 2016) . - pp 4749 - 4757[article]