Détail de l'auteur
Auteur Annette Eicker |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
GROOPS: A software toolkit for gravity field recovery and GNSS processing / Torsten Mayer-Gürr in Computers & geosciences, vol 155 (October 2021)
[article]
Titre : GROOPS: A software toolkit for gravity field recovery and GNSS processing Type de document : Article/Communication Auteurs : Torsten Mayer-Gürr, Auteur ; Saniya Behzadpour, Auteur ; Annette Eicker, Auteur Année de publication : 2021 Article en page(s) : n° 104864 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] C++
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] logiciel libre
[Termes IGN] orbitographie
[Termes IGN] série temporelle
[Termes IGN] traitement de données GNSSRésumé : (auteur) The Gravity Recovery Object Oriented Programming System (GROOPS) is a software toolkit written in C++ that enables the user to perform core geodetic tasks. Key features of the software include gravity field recovery from satellite and terrestrial data, the determination of satellite orbits from global navigation satellite system (GNSS) measurements, and the computation of GNSS constellations and ground station networks. Next to raw data processing, GROOPS is capable to operate on time series and spatial data to directly analyze and visualize the computed data sets. Most tasks and algorithms are (optionally) parallelized through the Message Passing Interface, thus the software enables a smooth transition from single-CPU desktop computers to large distributed computing environments for resource intensive tasks. For an easy and intuitive setup of complex workflows, GROOPS contains a graphical user interface to create and edit configuration files. The source code of the software is freely available on GitHub (https://github.com/groops-devs/groops) together with documentation, a cookbook with guided examples, and step-by-step installation instructions. Numéro de notice : A2021-948 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.cageo.2021.104864 Date de publication en ligne : 23/06/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104864 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99765
in Computers & geosciences > vol 155 (October 2021) . - n° 104864[article]
Titre : Remote sensing by satellite gravimetry Type de document : Monographie Auteurs : Thomas Gruber, Éditeur scientifique ; Annette Eicker, Éditeur scientifique ; Frank Flechtner, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 286 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-0365-0009-6 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] bilan de masse
[Termes IGN] CHAMP (satellite)
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GOCE
[Termes IGN] données GRACE
[Termes IGN] géocentre
[Termes IGN] gradient de gravitation
[Termes IGN] gravimétrie spatiale
[Termes IGN] nivellement par GPS
[Termes IGN] orbitographie
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) Over the last two decades, satellite gravimetry has become a new remote sensing technique that provides a detailed global picture of the physical structure of the Earth. With the CHAMP, GRACE, GOCE and GRACE Follow-On missions, mass distribution and mass transport in the Earth system can be systematically observed and monitored from space. A wide range of Earth science disciplines benefit from these data, enabling improvements in applied models, providing new insights into Earth system processes (e.g., monitoring the global water cycle, ice sheet and glacier melting or sea-level rise) or establishing new operational services. Long time series of mass transport data are needed to disentangle anthropogenic and natural sources of climate change impacts on the Earth system. In order to secure sustained observations on a long-term basis, space agencies and the Earth science community are currently planning future satellite gravimetry mission concepts to enable higher accuracy and better spatial and temporal resolution. This Special Issue provides examples of recent improvements in gravity observation techniques and data processing and analysis, applications in the fields of hydrology, glaciology and solid Earth based on satellite gravimetry data, as well as concepts of future satellite constellations for monitoring mass transport in the Earth system. Note de contenu : 1- The GFZ GRACE RL06 monthly gravity field time series: Processing details and quality assessment
2- SLR, GRACE and swarm gravity field determination and combination
3- A new approach to Earth’s gravity field modeling using GPS-derived kinematic orbits and baselines
4- Improved estimates of geocenter variability from time-variable gravity and ocean model outputs
5- An assessment of the GOCE high-level processing facility (HPF) released global geopotential models with regional test results in Turkey
6- Next-generation gravity missions: Sino-European numerical simulation comparison exercise
7- Combination analysis of future polar-type gravity mission and GRACE follow-on
8- Gravity field recovery using high-precision, high–low inter-satellite links
9- High-resolution mass trends of the Antarctic ice sheet through a spectral combination of satellite gravimetry and radar altimetry observations
10- The rapid and steady mass loss of the Patagonian icefields throughout the GRACE era: 2002–2017
11- Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system
12- Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements
13- GOCE-derived coseismic gravity gradient changes caused by the 2011 Tohoku-Oki earthquakeNuméro de notice : 28391 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0009-6 En ligne : https://doi.org/10.3390/books978-3-0365-0009-6 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98720 Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Jonathan Bamber, Auteur ; Richard Biancale, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Annette Eicker, Auteur ; Frank Flechtner, Auteur ; Thomas Gruber, Auteur ; Andreas Güntner, Auteur ; Gerhard Heinzel, Auteur ; Martin Horwath, Auteur ; Laurent Longuevergne, Auteur ; J. Muller, Auteur ; Isabelle Panet , Auteur ; Hubert Savenije, Auteur ; S. Seneviratne, Auteur ; Nico Sneeuw, Auteur ; Tonie M. van Dam, Auteur ; Bert Wouters, Auteur Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : pp 48 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gravimétrie spatiale
[Termes IGN] harmonique sphérique
[Termes IGN] masseRésumé : (auteur) As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space. Numéro de notice : A2019-635 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0006 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1515/jogs-2019-0006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95454
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 48 - 58[article]Science and user needs for observing global mass transport to understand global change and to benefit society / Roland Pail in Surveys in Geophysics, vol 36 n° 6 (November 2015)
[article]
Titre : Science and user needs for observing global mass transport to understand global change and to benefit society Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Henryk Dobslaw, Auteur ; Annette Eicker, Auteur ; Andreas Güntner, Auteur ; Martin Horwath, Auteur ; Eric Ivins, Auteur ; Laurent Longuevergne, Auteur ; Isabelle Panet , Auteur ; Bert Wouters, Auteur ; IUGG Expert Panel, Auteur Année de publication : 2015 Article en page(s) : pp 743 - 772 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Atmosphère
[Termes IGN] changement climatique
[Termes IGN] gravimétrie spatialeRésumé : (auteur) Satellite gravimetry is a unique measurement technique for observing mass transport processes in the Earth system on a global scale, providing essential indicators of both subtle and dramatic global change. Although past and current satellite gravity missions have achieved spectacular science results, due to their limited spatial and temporal resolution as well as limited length of the available time series numerous important questions are still unresolved. Therefore, it is important to move from current demonstration capabilities to sustained observation of the Earth’s gravity field. In an international initiative performed under the umbrella of the International Union of Geodesy and Geophysics, consensus on the science and user needs for a future satellite gravity observing system has been derived by an international panel of scientists representing the main fields of application, i.e., continental hydrology, cryosphere, ocean, atmosphere and solid Earth. In this paper the main results and findings of this initiative are summarized. The required target performance in terms of equivalent water height has been identified as 5 cm for monthly fields and 0.5 cm/year for long-term trends at a spatial resolution of 150 km. The benefits to meet the main scientific and societal objectives are investigated, and the added value is demonstrated for selected case studies covering the main fields of application. The resulting consolidated view on the required performance of a future sustained satellite gravity observing system represents a solid basis for the definition of technological and mission requirements, and is a prerequisite for mission design studies of future mission concepts and constellations. Numéro de notice : A2015--060 Affiliation des auteurs : IGN+Ext (2012-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10712-015-9348-9 Date de publication en ligne : 27/10/2015 En ligne : http://dx.doi.org/10.1007/s10712-015-9348-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83282
in Surveys in Geophysics > vol 36 n° 6 (November 2015) . - pp 743 - 772[article]