Détail de l'auteur
Auteur Wing-Kin Ma |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semiblind hyperspectral unmixing in the presence of spectral library mismatches / Xiao Fu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
[article]
Titre : Semiblind hyperspectral unmixing in the presence of spectral library mismatches Type de document : Article/Communication Auteurs : Xiao Fu, Auteur ; Wing-Kin Ma, Auteur ; José M. Bioucas-Dias, Auteur ; Tsung-Han Chan, Auteur Année de publication : 2016 Article en page(s) : pp 5171 - 5184 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] données clairsemées
[Termes IGN] image hyperspectrale
[Termes IGN] itération
[Termes IGN] régressionRésumé : (Auteur) The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a small subset of spectral samples in the dictionary to represent the whole image. A drawback with the current SR developments is that an actual spectral signature in the scene is often assumed to have zero mismatch with its corresponding dictionary sample, and such an assumption is considered too ideal in practice. In this paper, we tackle the spectral signature mismatch problem by proposing a dictionary-adjusted nonconvex sparsity-encouraging regression (DANSER) framework. The main idea is to incorporate dictionary-correcting variables in an SR formulation. A simple and low per-iteration complexity algorithm is tailor-designed for practical realization of DANSER. Using the same dictionary-correcting idea, we also propose a robust subspace solution for dictionary pruning. Extensive simulations and real-data experiments show that the proposed method is effective in mitigating the undesirable spectral signature mismatch effects. Numéro de notice : A2016-896 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2557340 En ligne : https://doi.org/10.1109/TGRS.2016.2557340 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83087
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 9 (September 2016) . - pp 5171 - 5184[article]