Détail de l'auteur
Auteur Joan Serra-Sagristà |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Statistical atmospheric parameter retrieval largely benefits from spatial–spectral image compression / Joaquín García-Sobrino in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
[article]
Titre : Statistical atmospheric parameter retrieval largely benefits from spatial–spectral image compression Type de document : Article/Communication Auteurs : Joaquín García-Sobrino, Auteur ; Joan Serra-Sagristà, Auteur ; Valero Laparra, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp. 2213 - 2224 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] compression d'image
[Termes IGN] données météorologiques
[Termes IGN] humidité de l'air
[Termes IGN] image infrarouge couleur
[Termes IGN] image MetOp-IASI
[Termes IGN] interférométrie
[Termes IGN] température de l'airRésumé : (Auteur) The infrared atmospheric sounding interferometer (IASI) is flying on board of the Metop satellite series, which is part of the EUMETSAT Polar System. Products obtained from IASI data represent a significant improvement in the accuracy and quality of the measurements used for meteorological models. Notably, the IASI collects rich spectral information to derive temperature and moisture profiles, among other relevant trace gases, essential for atmospheric forecasts and for the understanding of weather. Here, we investigate the impact of near-lossless and lossy compression on IASI L1C data when statistical retrieval algorithms are later applied. We search for those compression ratios that yield a positive impact on the accuracy of the statistical retrievals. The compression techniques help reduce certain amount of noise on the original data and, at the same time, incorporate spatial-spectral feature relations in an indirect way without increasing the computational complexity. We observed that compressing images, at relatively low bit rates, improves results in predicting temperature and dew point temperature, and we advocate that some amount of compression prior to model inversion is beneficial. This research can benefit the development of current and upcoming retrieval chains in infrared sounding and hyperspectral sensors. Numéro de notice : A2017-173 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2639099 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2639099 Format de la ressource électronique : URL bulletin Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84722
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 4 (April 2017) . - pp. 2213 - 2224[article]Regression wavelet analysis for lossless coding of remote-sensing data / Naoufal Amrani in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
[article]
Titre : Regression wavelet analysis for lossless coding of remote-sensing data Type de document : Article/Communication Auteurs : Naoufal Amrani, Auteur ; Joan Serra-Sagristà, Auteur ; Valero Laparra, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 5616 - 5627 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] ondelette
[Termes IGN] régression
[Termes IGN] transformation en ondelettesRésumé : (Auteur) A novel wavelet-based scheme to increase coefficient independence in hyperspectral images is introduced for lossless coding. The proposed regression wavelet analysis (RWA) uses multivariate regression to exploit the relationships among wavelet-transformed components. It builds on our previous nonlinear schemes that estimate each coefficient from neighbor coefficients. Specifically, RWA performs a pyramidal estimation in the wavelet domain, thus reducing the statistical relations in the residuals and the energy of the representation compared to existing wavelet-based schemes. We propose three regression models to address the issues concerning estimation accuracy, component scalability, and computational complexity. Other suitable regression models could be devised for other goals. RWA is invertible, it allows a reversible integer implementation, and it does not expand the dynamic range. Experimental results over a wide range of sensors, such as AVIRIS, Hyperion, and Infrared Atmospheric Sounding Interferometer, suggest that RWA outperforms not only principal component analysis and wavelets but also the best and most recent coding standard in remote sensing, CCSDS-123. Numéro de notice : A2016-905 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2569485 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2569485 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83100
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 9 (September 2016) . - pp 5616 - 5627[article]