Détail de l'auteur
Auteur Jianfeng Song |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Guided superpixel method for topographic map processing / Qiguang Miao in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
[article]
Titre : Guided superpixel method for topographic map processing Type de document : Article/Communication Auteurs : Qiguang Miao, Auteur ; Tiange Liu, Auteur ; Jianfeng Song, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 6265 - 6279 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse infrapixellaire
[Termes IGN] cartographie topographique
[Termes IGN] décomposition du pixel
[Termes IGN] détection de contours
[Termes IGN] distribution spatiale
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] lever topographiqueRésumé : (Auteur) Superpixels have been widely used in lots of computer vision and image processing tasks but rarely used in topographic map processing due to the complex distribution of geographic elements in this kind of images. We propose a novel superpixel-generating method based on guided watershed transform (GWT). Before GWT, the cues of geographic element distribution and boundaries between different elements need to be obtained. A linear feature extraction method based on a compound opposite Gaussian filter and a shear transform is presented to acquire the distribution information. Meanwhile, a boundary detection method, which based on the color-opponent mechanisms of the visual system, is employed to get the boundary information. Then, both linear features and boundaries are input to the final partition procedure to obtain superpixels. The experiments show that our method has the best performance in shape control, size control, and boundary adherence, among all the comparison methods, which are classic and state of the art. Furthermore, we verify the low complexity and low cost of memory in our method through experiments, which makes it possible to deal with large-scale topographic maps. Numéro de notice : A2016-911 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2567481 En ligne : https://doi.org/10.1109/TGRS.2016.2567481 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83133
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 11 (November 2016) . - pp 6265 - 6279[article]