Détail de l'auteur
Auteur Bradley T. Zavodsky |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assimilation of SMOS retrievals in the land information system / Clay B. Blankenship in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
[article]
Titre : Assimilation of SMOS retrievals in the land information system Type de document : Article/Communication Auteurs : Clay B. Blankenship, Auteur ; Jonathan L. Case, Auteur ; Bradley T. Zavodsky, Auteur ; William L. Crosson, Auteur Année de publication : 2016 Article en page(s) : pp 6320 - 6332 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] carte de la végétation
[Termes IGN] Etats-Unis
[Termes IGN] filtre de Kalman
[Termes IGN] humidité du sol
[Termes IGN] image radar
[Termes IGN] image SMOS
[Termes IGN] modèle numérique de surface
[Termes IGN] radiométrie
[Termes IGN] système d'information foncièreRésumé : (Auteur) The Soil Moisture and Ocean Salinity (SMOS) satellite provides retrievals of soil moisture in roughly the upper 5 cm with a 30-50-km resolution and a mission accuracy requirement of 0.04 cm3/cm-3. These observations can be used to improve land surface model (LSM) soil moisture states through data assimilation (DA). In this paper, SMOS soil moisture retrievals are assimilated into the Noah LSM via an Ensemble Kalman Filter within the National Aeronautics and Space Administration Land Information System. Bias correction is implemented using cumulative distribution function (cdf) matching, with points aggregated by either land cover or soil type to reduce the sampling error in generating the cdfs. An experiment was run for the warm season of 2011 to test SMOS DA and to compare assimilation methods. Verification of soil moisture analyses in the 0-10-cm upper layer and the 0-1-m root zone was conducted using in situ measurements from several observing networks in central and southeastern United States. This experiment showed that SMOS DA significantly increased the anomaly correlation of Noah soil moisture with station measurements from 0.45 to 0.57 in the 0-10-cm layer. Time series at specific stations demonstrates the ability of SMOS DA to increase the dynamic range of soil moisture in a manner consistent with station measurements. Among the bias correction methods, the correction based on soil type performed best at bias reduction but also reduced correlations. The vegetation-based correction did not produce any significant differences compared with using a simple uniform correction curve. Numéro de notice : A2016-913 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2579604 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2579604 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83135
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 11 (November 2016) . - pp 6320 - 6332[article]