Détail de l'auteur
Auteur Jie Feng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection / Jie Feng in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
[article]
Titre : Multiple kernel learning based on discriminative kernel clustering for hyperspectral band selection Type de document : Article/Communication Auteurs : Jie Feng, Auteur ; Licheng Jiao, Auteur ; Tao Sun, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 6516 - 6530 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification automatique
[Termes IGN] image hyperspectrale
[Termes IGN] intelligence artificielle
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) In hyperspectral images, band selection plays a crucial role for land-cover classification. Multiple kernel learning (MKL) is a popular feature selection method by selecting the relevant features and classifying the images simultaneously. Unfortunately, a large number of spectral bands in hyperspectral images result in excessive kernels, which limit the application of MKL. To address this problem, a novel MKL method based on discriminative kernel clustering (DKC) is proposed. In the proposed method, a discriminative kernel alignment (KA) (DKA) is defined. Traditional KA measures kernel similarity independently of the current classification task. Compared with KA, DKA measures the similarity of discriminative information by introducing the comparison of intraclass and interclass similarities. It can evaluate both kernel redundancy and kernel synergy for classification. Then, DKA-based affinity-propagation clustering is devised to reduce the kernel scale and retain the kernels having high discrimination and low redundancy for classification. Additionally, an analysis of necessity for DKC in hyperspectral band selection is provided by empirical Rademacher complexity. Experimental results on several hyperspectral images demonstrate the effectiveness of the proposed band selection method in terms of classification performance and computation efficiency. Numéro de notice : A2016-915 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2585961 En ligne : https://doi.org/10.1109/TGRS.2016.2585961 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83140
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 11 (November 2016) . - pp 6516 - 6530[article]