Détail de l'auteur
Auteur Zhi He |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fast three-dimensional empirical mode decomposition of hyperspectral images for class-oriented multitask learning / Zhi He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 11 (November 2016)
[article]
Titre : Fast three-dimensional empirical mode decomposition of hyperspectral images for class-oriented multitask learning Type de document : Article/Communication Auteurs : Zhi He, Auteur ; Jun Li, Auteur ; Lin Liu, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 6625 - 6643 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] décomposition d'image
[Termes IGN] image 3DRésumé : (Auteur) In this paper, we propose a fast 3-D empirical mode decomposition (fTEMD) method for hyperspectral images (HSIs) to achieve class-oriented multitask learning (cMTL). The major steps of the proposed method are twofold: 1) fTEMD and 2) cMTL. On the one hand, the traditional empirical mode decomposition is extended to its 3-D version, which naturally treats the HSI as a cube and effectively decomposes the HSI into several 3-D intrinsic mode functions (TIMFs). To accelerate the fTEMD, 3-D Delaunay triangulation is adopted to determine the distances of extrema, whereas separable filters are implemented to generate the envelopes. On the other hand, cMTL is performed on the TIMFs by taking those TIMFs as features of different tasks. The proposed cMTL learns the representation coefficients by taking advantage of the class labels and fully exploiting the information contained in each TIMF. Experiments conducted on three benchmark data sets demonstrate the effectiveness of the proposed method. Numéro de notice : A2016-916 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2587672 En ligne : https://doi.org/10.1109/TGRS.2016.2587672 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83143
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 11 (November 2016) . - pp 6625 - 6643[article]Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification / Zhi He in ISPRS Journal of photogrammetry and remote sensing, vol 121 (November 2016)
[article]
Titre : Robust multitask learning with three-dimensional empirical mode decomposition-based features for hyperspectral classification Type de document : Article/Communication Auteurs : Zhi He, Auteur ; Lin Liu, Auteur Année de publication : 2016 Article en page(s) : pp 11 – 27 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] module d'extensionRésumé : (Auteur) Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2l1,2-norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods. Numéro de notice : A2016--011 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.08.007 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.08.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83873
in ISPRS Journal of photogrammetry and remote sensing > vol 121 (November 2016) . - pp 11 – 27[article]