Détail de l'auteur
Auteur Devin Routh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling the effects of horizontal positional error on classification accuracy statistics / Henry B. Glick in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 10 (October 2016)
[article]
Titre : Modeling the effects of horizontal positional error on classification accuracy statistics Type de document : Article/Communication Auteurs : Henry B. Glick, Auteur ; Devin Routh, Auteur ; Charlie Bettigole, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 789 - 802 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification
[Termes IGN] erreur de positionnement
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] simulationRésumé : (Auteur) Using a concept proposed by Stehman and Czaplewski (1997), we implemented spatially-explicit Monte Carlo simulations to test the effects of manually introduced horizontal positional error on standard inter-rater statistics derived from twelve classified high-resolution images. Through simulations we found that both overall and kappa accuracies decrease markedly with increasing error distance, varying greatly across distances relevant to practical application. The use of ground reference sites falling solely in homogeneous patches significantly improves inter-rater statistics and calls into question the use of kernel-smoothed data in one-time accuracy assessments. Our simulations offer insight into the scale of both structural and cover type heterogeneity across our landscapes, and support a new method for minimizing the effects of positional error on map accuracy. We recommend that analysts use caution when applying traditional accuracy assessment strategies to categorical maps, particularly when working with high-resolution imagery. Numéro de notice : A2016-934 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.82.10.789 En ligne : http://dx.doi.org/10.14358/PERS.82.10.789 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83348
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 10 (October 2016) . - pp 789 - 802[article]