Détail de l'auteur
Auteur Stefano de Sabbata |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
A graph-based semi-supervised approach to classification learning in digital geographies / Pengyuan Liu in Computers, Environment and Urban Systems, vol 86 (March 2021)
[article]
Titre : A graph-based semi-supervised approach to classification learning in digital geographies Type de document : Article/Communication Auteurs : Pengyuan Liu, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2021 Article en page(s) : n° 101583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] approche participative
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] données spatiotemporelles
[Termes IGN] partage de données localisées
[Termes IGN] prise en compte du contexte
[Termes IGN] réseau social
[Termes IGN] segmentation sémantique
[Termes IGN] Time-geographyRésumé : (auteur) As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks. Numéro de notice : A2021-024 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101583 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101583 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96608
in Computers, Environment and Urban Systems > vol 86 (March 2021) . - n° 101583[article]
Titre : Learning digital geographies through geographical artificial intelligence Type de document : Thèse/HDR Auteurs : Pengyuan Liu, Auteur ; Stefano de Sabbata, Directeur de thèse ; Yu-Dong Zhang, Directeur de thèse Editeur : Leicester [Royaume-Uni] : University of Leicester Année de publication : 2021 Importance : 199 p. Format : 21 x 30 cm Note générale : bibliographie
A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy, Geology and EnvironmentLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse socio-économique
[Termes IGN] apprentissage profond
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] croissance urbaine
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] données spatiotemporelles
[Termes IGN] géomatique web
[Termes IGN] intelligence artificielle
[Termes IGN] Londres
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] système d'information urbain
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) As the distinction between online and physical spaces rapidly degrades, digital platforms have become an integral component of how people’s everyday experiences are mediated. User-generated content (UGC) shared on such platforms provides insights into how users want to represent their everyday lives, which augments and reinforces our understanding of local communities through time and layers dynamic information across and over the geographic space. Inspired by the development of the newly arisen scientific disciplines within geography: geographical artificial intelligence (GeoAI), this thesis adopts deep learning approaches on graph representations of human dynamics illustrated through geotagged UGC to explore how place representations are augmented and reinforced through users’ spatial experiences by classifying their multimedia activities and identifying the spatial clusters of UGC at the urban scale. Having the place representations described through UGC, this thesis explores how these representations can be used in conjunction with various official spatial statistics to understand and predict the dynamic changes of the socio-economic characteristics of places. The principal contributions of this thesis are: (1) to provide frameworks with higher classification and prediction accuracy but requiring fewer sample data; thus, contributing to an advanced framework to summarise spatial characteristics of places; (2) to show that multimedia content provides rich information regarding places, the use of space, and people’s experience of the landscape; thus, benefiting a better understanding of place representations; (3) to illustrate that the spatial patterns of UGC can be adopted as a valuable proxy to understand urban development and neighbourhood change; (4) to reinforce the concept that Spatial is Special. Spatial processes are commonly spatially autocorrelated. The mainstream of machine learning methods do not explicitly incorporate the spatial or spatio-temporal component to address such a speciality of spatial data. This thesis highlights the importance of explicitly incorporating spatial or spatio-temporal components in geographical analysis models. Note de contenu : 1- Introduction
2- Towards quantitative digital geographies: Concepts, research and implications
3- Data and methods
4- Classification learning through a graph-based semi-supervised approach
5- Location estimation of social media content through a graph-based linkPrediction
6- Urban change modelling with spatial knowledge graphs
7- DiscussionNuméro de notice : 28629 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Thèse étrangère Note de thèse : PhD Thesis: Geology and Environment: Leicester : 2021 DOI : sans En ligne : https://leicester.figshare.com/articles/thesis/Learning_Digital_Geographies_thro [...] Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99618 Los Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
[article]
Titre : Los Angeles as a digital place: The geographies of user‐generated content Type de document : Article/Communication Auteurs : Andrea Ballatore, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] analyse spatiale
[Termes IGN] centre urbain
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] distribution spatiale
[Termes IGN] données multisources
[Termes IGN] données socio-économiques
[Termes IGN] exploration de données géographiques
[Termes IGN] Foursquare
[Termes IGN] Los Angeles
[Termes IGN] modèle de régression
[Termes IGN] OpenStreetMap
[Termes IGN] participation du public
[Termes IGN] représentation géographique
[Termes IGN] réseau social
[Termes IGN] réseau social géodépendant
[Termes IGN] TwitterRésumé : (auteur) Online representations of places are becoming pivotal in informing our understanding of urban life. Content production on online platforms is grounded in the geography of their users and their digital infrastructure. These constraints shape place representation, that is, the amount, quality, and type of digital information available in a geographic area. In this article we study the place representation of user‐generated content (UGC) in Los Angeles County, relating the spatial distribution of the data to its geo‐demographic context. Adopting a comparative and multi‐platform approach, this quantitative analysis investigates the spatial relationship between four diverse UGC datasets and their context at the census tract level (about 685,000 geo‐located tweets, 9,700 Wikipedia pages, 4 million OpenStreetMap objects, and 180,000 Foursquare venues). The context includes the ethnicity, age, income, education, and deprivation of residents, as well as public infrastructure. An exploratory spatial analysis and regression‐based models indicate that the four UGC platforms possess distinct geographies of place representation. To a moderate extent, the presence of Twitter, OpenStreetMap, and Foursquare data is influenced by population density, ethnicity, education, and income. However, each platform responds to different socio‐economic factors and clusters emerge in disparate hotspots. Unexpectedly, Twitter data tend to be located in denser, more deprived areas, and the geography of Wikipedia appears peculiar and harder to explain. These trends are compared with previous findings for the area of Greater London. Numéro de notice : A2020-671 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12600 Date de publication en ligne : 02/01/2020 En ligne : https://doi.org/10.1111/tgis.12600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96156
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 23 p.[article]European handbook of crowdsourced geographic information, ch. 14. Querying VGI by semantic enrichment / Robert Lemmens (2016)
Titre de série : European handbook of crowdsourced geographic information, ch. 14 Titre : Querying VGI by semantic enrichment Type de document : Chapitre/Contribution Auteurs : Robert Lemmens, Auteur ; Gilles Falquet, Auteur ; Stefano de Sabbata, Auteur ; Bin Jiang, Auteur ; Bénédicte Bucher , Auteur Editeur : Londres : Ubiquity press Année de publication : 2016 Importance : pp 185 - 194 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] enrichissement sémantique
[Termes IGN] folksonomie
[Termes IGN] langage naturel (informatique)
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] recherche d'information géographique
[Termes IGN] requête (informatique)Résumé : (auteur) Volunteered geographic information (VGI) plays an increasing role in current geodata provision. At the same time, due to its lack of structure, it is hard to use as meaningful input in software applications. In this chapter, we embark upon the unstructured character of VGI and on ways to enrich the structure in order to make it suitable for information retrieval. We describe the characteristics of semantic enrichment and explain how folksonomies and ontologies play a role. We believe that they represent different levels of formality in a semantic reference space and determine the richness of the information retrieval. Numéro de notice : H2016-004 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Autre URL associée : vers HAL Thématique : GEOMATIQUE Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.5334/bax En ligne : https://doi.org/10.5334/bax Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83786 Documents numériques
en open access
Querying VGI by semantic enrichmentAdobe Acrobat PDF