Détail de l'auteur
Auteur Maryem Fadili
Commentaire :
Autorités liées :
idHAL :
pas d'identifiant
idRef :
autre URL :
ORCID :
|
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
RegisTree: a registration algorithm to enhance forest inventory plot georeferencing / Maryem Fadili in Annals of Forest Science, vol 76 n° 2 (June 2019)
[article]
Titre : RegisTree: a registration algorithm to enhance forest inventory plot georeferencing Type de document : Article/Communication Auteurs : Maryem Fadili , Auteur ; Jean-Pierre Renaud , Auteur ; Jérôme Bock, Auteur ; Cédric Vega , Auteur Année de publication : 2019 Projets : DIABOLO / Packalen, Tuula Article en page(s) : n° 30 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] placette d'échantillonnage
[Termes IGN] superposition de donnéesRésumé : (auteur) Key message : The accuracy of remote sensing-based models of forest attributes could be improved by controlling the spatial registration of field and remote sensing data. We have demonstrated the potential of an algorithm matching plot-level field tree positions with lidar canopy height models and derived local maxima to achieve a precise registration automatically.
Context : The accuracy of remote sensing-based estimates of forest parameters depends on the quality of the spatial registration of the training data.
Aims : This study introduces an algorithm called RegisTree to correct field plot positions by matching a spatialized field tree height map with lidar canopy height models (CHMs).
Methods : RegisTree is based on a point (field positions) to surface (CHM) adjustment approach modified to ensure that at least one field tree position corresponds to CHM local maxima.
Results : RegisTree has been validated with respect to positioning errors and the performance of lidar-derived estimation of plot volume. Overall, RegisTree enabled to register field plots surveyed in a range of forest conditions with a precision of 1.5 m (± 1.23 m), but a higher performance for conifer plots, and a limited efficiency in homogeneous stands, having similar heights. Improved plot positions were found to have a limited impact on volume predictions under the range of tested conditions, with a gain up to 1.3%.
Conclusion : RegisTree could be used to improve the forest plot position from field surveys collected with low-grade GPS and to contribute to the development of processing chains of 3D remote sensing-based models of forest parameters.Numéro de notice : A2019-339 Affiliation des auteurs : LIF+Ext (2012-2019) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-019-0814-2 Date de publication en ligne : 02/04/2019 En ligne : http://dx.doi.org/10.1007/s13595-019-0814-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93373
in Annals of Forest Science > vol 76 n° 2 (June 2019) . - n° 30[article]Matching plot-level tree maps with 3D remote sensing data for assessing and estimating forest parameters / Cédric Vega (2017)
Titre : Matching plot-level tree maps with 3D remote sensing data for assessing and estimating forest parameters Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Maryem Fadili , Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2017 Conférence : SilviLaser 2017, 15th conference on Lidar Applications for Assessing and Managing Forest Ecosystems 10/10/2017 12/10/2017 Blacksburg Virginie - Etats-Unis OA Abstracts only Langues : Anglais (eng) Descripteur : [Termes IGN] appariement de données localisées
[Termes IGN] erreur de positionnement
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] programmation par contraintes
[Termes IGN] structure d'un peuplement forestier
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) 3D remote sensing data from either Lidar or Photogrammetric means are recognized as valuable sources of information for assessing and estimating forest structure and related parameters. Both data types have been used with field inventory data for both mapping forest parameters and supporting multisource inventories. However, such a combination requires the data to be accurately matched in the spatial domain. While 3D remote sensing data might provide metric accuracy, the spatial accuracy of field plots remain largely constrained by the limited precision of GPS measurements under forest canopies. Different approaches have been proposed to improve this data registration issue, mainly through matching algorithms aiming to spatially adjust height information from field inventory with remote sensing-based models of canopy heights (CHM). State of the art approaches rely on either point to surface or point to point matching algorithms. However, the former did not make any hypothesis on the tree position on the CHM and could lead to inappropriate match. And the later relies on strong assumptions on the spatial distribution of trees and are thus sensitive to the quality of the tree apices detected on the CHM. We propose an algorithm taking advantage of both approaches. The algorithm is based on a point to surface matching algorithm constraints by local maxima (LM) extracted from the CHM. A search algorithm moved the field tree map in a given neighborhood, ensuring that the highest field tree is located over a LM. The best position is defined using both the correlation and the height error. The algorithm was tested on 91 plots including different forest types and a range of forest structure. Initial positions were shifted in average by 2.18 m (±1.95 m SD) and led to an average error of 1.61 m (±1.07 m). The higher the tree number, the better the registration. Numéro de notice : C2017-061 Affiliation des auteurs : LIF (2012-2019) Thématique : FORET/MATHEMATIQUE Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99224
https://dumas.ccsd.cnrs.fr/dumas-01631676