Détail de l'auteur
Auteur Zhuqiang Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A hierarchical methodology for urban facade parsing from TLS point clouds / Zhuqiang Li in ISPRS Journal of photogrammetry and remote sensing, vol 123 (January 2017)
[article]
Titre : A hierarchical methodology for urban facade parsing from TLS point clouds Type de document : Article/Communication Auteurs : Zhuqiang Li, Auteur ; Liqiang Zhang, Auteur ; P. Takis Mathiopoulos, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 75 - 93 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de données
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] évaluation
[Termes IGN] façade
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] zone urbaineRésumé : (Auteur) The effective and automated parsing of building facades from terrestrial laser scanning (TLS) point clouds of urban environments is an important research topic in the GIS and remote sensing fields. It is also challenging because of the complexity and great variety of the available 3D building facade layouts as well as the noise and data missing of the input TLS point clouds. In this paper, we introduce a novel methodology for the accurate and computationally efficient parsing of urban building facades from TLS point clouds. The main novelty of the proposed methodology is that it is a systematic and hierarchical approach that considers, in an adaptive way, the semantic and underlying structures of the urban facades for segmentation and subsequent accurate modeling. Firstly, the available input point cloud is decomposed into depth planes based on a data-driven method; such layer decomposition enables similarity detection in each depth plane layer. Secondly, the labeling of the facade elements is performed using the SVM classifier in combination with our proposed BieS-ScSPM algorithm. The labeling outcome is then augmented with weak architectural knowledge. Thirdly, least-squares fitted normalized gray accumulative curves are applied to detect regular structures, and a binarization dilation extraction algorithm is used to partition facade elements. A dynamic line-by-line division is further applied to extract the boundaries of the elements. The 3D geometrical façade models are then reconstructed by optimizing facade elements across depth plane layers. We have evaluated the performance of the proposed method using several TLS facade datasets. Qualitative and quantitative performance comparisons with several other state-of-the-art methods dealing with the same facade parsing problem have demonstrated its superiority in performance and its effectiveness in improving segmentation accuracy. Numéro de notice : A2017-009 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.11.008 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.11.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83910
in ISPRS Journal of photogrammetry and remote sensing > vol 123 (January 2017) . - pp 75 - 93[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017013 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt