Détail de l'auteur
Auteur Edmund Y. Lam |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Computationally efficient hyperspectral data learning based on the doubly stochastic dirichlet process / Xing Sun in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
[article]
Titre : Computationally efficient hyperspectral data learning based on the doubly stochastic dirichlet process Type de document : Article/Communication Auteurs : Xing Sun, Auteur ; Nelson H. C. Yung, Auteur ; Edmund Y. Lam, Auteur ; Hayden K.-H. So, Auteur Année de publication : 2017 Article en page(s) : pp 363 - 374 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification
[Termes IGN] image hyperspectrale
[Termes IGN] modèle stochastique
[Termes IGN] problème de DirichletRésumé : (Auteur) The Dirichlet process (DP) prior is effective in modeling HSIs (HSI) and identifying land-cover classes. However, modeling a continuously varying intensity of these land covers elegantly and consistently is still a challenge. We propose a doubly stochastic DP (DSDP) as an efficient model of the global topic measurement space, which imposes a weaker assumption compared with the discrete Markov assumption, resulting in a lower computational cost than other DP-prior-based models. We also present a mixture model of DSDP, which is termed the marked sigmoidal Gaussian process (SGP) DSDP mixture model. It can be thinned from a DP mixture without massive auxiliary covariates, and the marked function prior makes the number of land-cover classes consistent, whereas the SGP function prior models the HSI land-cover variation globally. The consistency of the number of land covers is maintained for various HSIs with large-scale geographical areas. Experiments show that the model is robust and consistent on HSI identification with weak or even no supervision. Numéro de notice : A2017-020 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2606575 En ligne : https://doi.org/10.1109/TGRS.2016.2606575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83951
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 1 (January 2017) . - pp 363 - 374[article]