Détail de l'auteur
Auteur Ravi Peters |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
City3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)
[article]
Titre : City3D: Large-scale building reconstruction from airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Jin Huang, Auteur ; Jantien E. Stoter, Auteur ; Ravi Peters, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2254 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] mur
[Termes IGN] polygonale
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] Triangular Regular Network
[Termes IGN] triangulation de DelaunayRésumé : (auteur) We present a fully automatic approach for reconstructing compact 3D building models from large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR point clouds lies in that the vertical walls are typically missing. Based on the observation that urban buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an approach to infer the vertical walls directly from the data. With the planar segments of both roofs and walls, we hypothesize the faces of the building surface, and the final model is obtained by using an extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically, we introduce a new energy term to encourage roof preferences and two additional hard constraints into the optimization step to ensure correct topology and enhance detail recovery. Experiments on various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we have generated a new dataset with our method consisting of the point clouds and 3D models of 20k real-world buildings. We believe this dataset can stimulate research in urban reconstruction from airborne LiDAR point clouds and the use of 3D city models in urban applications. Numéro de notice : A2022-387 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14092254 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.3390/rs14092254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100667
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2254[article]Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands / Ravi Peters in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands Type de document : Article/Communication Auteurs : Ravi Peters, Auteur ; Balazs Dukai, Auteur ; Stelios Vitalis, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 170 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] itération
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] niveau de détail
[Termes IGN] Pays-Bas
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] toit
[Termes IGN] Web Map Tile ServiceRésumé : (auteur) In this paper, we present our workflow to automatically reconstruct three-dimensional (3D) building models based on two-dimensional building polygons and a lidar point cloud. The workflow generates models at different levels of detail (LoDs) to support data requirements of different applications from one consistent source. Specific attention has been paid to make the workflow robust to quickly run a new iteration in case of improvements in an algorithm or in case new input data become available. The quality of the reconstructed data highly depends on the quality of the input data and is monitored in several steps of the process. A 3D viewer has been developed to view and download the openly available 3D data at different LoDs in different formats. The workflow has been applied to all 10 million buildings of the Netherlands. The 3D service will be updated after new input data becomes available. Numéro de notice : A2022-200 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00032R2 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.21-00032R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 165 - 170[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Robust approximation of the Medial Axis Transform of LiDAR point clouds as a tool for visualisation / Ravi Peters in Computers & geosciences, vol 90 part A (May 2016)
[article]
Titre : Robust approximation of the Medial Axis Transform of LiDAR point clouds as a tool for visualisation Type de document : Article/Communication Auteurs : Ravi Peters, Auteur ; Hugo Ledoux, Auteur Année de publication : 2016 Article en page(s) : pp 123 - 133 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] axe médian
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] géovisualisation
[Termes IGN] semis de points
[Termes IGN] simplification de surface
[Termes IGN] transformation géométrique
[Termes IGN] visualisation 3DRésumé : (auteur) Governments and companies around the world collect point clouds (datasets containing elevation points) because these are useful for many applications, e.g. to reconstruct 3D city models, to understand and predict the impact of floods, and to monitor dikes. We address in this paper the visualisation of point clouds, which is perhaps the most essential instrument a practitioner or a scientist has to analyse and understand such datasets. We argue that it is currently hampered by two main problems: (1) point clouds are often massive (several billion points); (2) the viewer's perception of depth and structure is often lost (because of the sparse and unstructured points). We propose solving both problems by using the Medial Axis Transform (MAT) and its properties. This allows us to (1) smartly simplify a point cloud in a geometry-dependent way (to preserve only significant features), and (2) to render splats whose radii are adaptive to the distribution of points (and thus obtain less “holes” in the surface). Our main contribution is a series of heuristics that allows us to compute the MAT robustly for noisy real-world LiDAR point clouds, and to compute the MAT for point clouds that do not fit into the main memory. We have implemented our algorithms, we report on experiments made with point clouds (of more than one billion points), and we demonstrate that we are able to render scenes with much less points than in the original point cloud (we preserve around 10%) while retaining good depth-perception and a sense of structure at close viewing distances. Numéro de notice : A2016--063 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cageo.2016.02.019 En ligne : http://dx.doi.org/10.1016/j.cageo.2016.02.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84237
in Computers & geosciences > vol 90 part A (May 2016) . - pp 123 - 133[article]