Détail de l'auteur
Auteur Karina Wilgan |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
High-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland / Karina Wilgan in Journal of geodesy, vol 93 n°6 (June 2019)
[article]
Titre : High-resolution models of tropospheric delays and refractivity based on GNSS and numerical weather prediction data for alpine regions in Switzerland Type de document : Article/Communication Auteurs : Karina Wilgan, Auteur ; Alain Geiger, Auteur Année de publication : 2019 Article en page(s) : pp 819 - 835 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Alpes
[Termes IGN] collocation par moindres carrés
[Termes IGN] correction troposphérique
[Termes IGN] données GNSS
[Termes IGN] données météorologiques
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] modèle mathématique
[Termes IGN] précision de l'estimation
[Termes IGN] prévision météorologique
[Termes IGN] réfraction
[Termes IGN] retard troposphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] SuisseRésumé : (auteur) The tropospheric delay of a microwave signal affects all space geodetic techniques. One possibility of modeling the delay is by introducing tropospheric models from external data sources. In this study, we present high-resolution models of tropospheric total refractivity and zenith total delay (ZTD) for the alpine area in Switzerland. The troposphere models are based on different combinations of data sources, including numerical weather prediction (NWP) model COSMO-1 with high spatial resolution of 1.1 km × 1.1 km, GNSS data from permanent geodetic stations and GPS L1-only data from low-cost permanent stations. The tropospheric parameters are interpolated to the arbitrary locations by the least-squares collocation method using the in-house developed software package COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays). The first goal of this study is to validate the obtained models with the reference radiosonde and GNSS data to show the improvement w.r.t. the previous studies that used lower resolution input data. In case of total refractivity, the profiles reconstructed from COSMO-1 model show the best agreement with the reference radiosonde measurements, with an average bias of 1.1 ppm (0.6% of the total refractivity value along a vertical profile) and standard deviation of 2.6 ppm (1.6%) averaged from the whole profile. The radiosondes are assimilated into COSMO-1 model; thus, a high correlation is expected, and this comparison is not independent. In case of ZTD, the GNSS-based model shows the highest agreement with the reference GNSS data, with an average bias of 0.2 mm (0.01%) and standard deviation of 4.3 mm (0.2%). For COSMO-based model, the agreement is also very high, especially compared to our previous studies with lower resolution NWPs. The average bias is equal to − 2.5 mm (0.1%) with standard deviation of 9.2 mm (0.5%). The second goal of this study is to test the feasibility of calculating high-resolution troposphere models over a limited area from coarser data sets. We calculate the ZTD models with spatial resolution of 20 m for a test area in Matter Valley. We include the information from the low-cost GPS stations (X-Sense), to also assess the performance and future usability of such stations. We validate the models based on three data sources w.r.t. the reference GNSS data. For the station located inside the area of the study, the models have an agreement of few mm with the reference data. For stations located further away from the study area, the agreement for X-Sense is smaller, but the standard deviations of residuals are still below 15 mm. We consider also another factor of evaluating the high-resolution models, i.e., spatial variability of the data. For designing a GNSS network, also for the tropospheric estimates, the height variability of the network may be as important as the horizontal distribution. The GNSS-based models are built from the coarsest network; thus, their variability is the lowest. The variability of X-Sense-based stations is the highest; thus, such data may be suitable for building troposphere models for very high-resolution applications. Numéro de notice : A2019-350 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1203-6 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1007/s00190-018-1203-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93394
in Journal of geodesy > vol 93 n°6 (June 2019) . - pp 819 - 835[article]Real-time precise point positioning augmented with high-resolution numerical weather prediction model / Karina Wilgan in GPS solutions, vol 21 n° 3 (July 2017)
[article]
Titre : Real-time precise point positioning augmented with high-resolution numerical weather prediction model Type de document : Article/Communication Auteurs : Karina Wilgan, Auteur ; Tomasz Hadas, Auteur ; Pawel Hordyniec, Auteur ; Jaroslaw Bosy, Auteur Année de publication : 2017 Article en page(s) : pp 1341 – 1353 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse diachronique
[Termes IGN] Pologne
[Termes IGN] positionnement ponctuel précis
[Termes IGN] prévision météorologique
[Termes IGN] propagation troposphérique
[Termes IGN] réseau permanent EUREF
[Termes IGN] retard troposphérique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GNSS
[Termes IGN] temps réelRésumé : (auteur) The tropospheric delay is one of the major error sources in precise point positioning (PPP), affecting the accuracy and precision of estimated coordinates and convergence time, which raises demand for a reliable tropospheric model, suitable to support PPP. In this study, we investigate the impact of three tropospheric models and mapping functions regarding position accuracy and convergence time. We propose a routine to constrain the tropospheric estimates, which we implemented in the in-house developed real-time PPP software. We take advantage of the high spatial resolution (4 × 4 km2) numerical weather prediction Weather Research and Forecasting (WRF) model and near real-time GNSS data combined by the least-squares collocation estimation to reconstruct the tropospheric delays. We also present mapping functions calculated from the WRF model using the ray-tracing technique. The performance tests are conducted on 14 Polish EUREF Permanent Network (EPN) stations during 3 weeks of different tropospheric conditions: calm, standard and severe. We consider six GNSS data processing variants, including two commonly used variants using a priori ZTD and mapping functions from UNB3m and VMF1-FC models, one with a priori ZTD and mapping functions calculated directly from WRF model and three variants using the aforementioned mapping functions but with ZTD model based on GNSS and WRF data used as a priori troposphere and to constrain tropospheric estimates. The application of a high-resolution GNSS/WRF-based ZTD model and mapping functions results in the best agreement with the official EPN coordinates. In both static and kinematic modes, this approach results in an average reduction of 3D bias by 20 and 10 mm, respectively, but an increase of 3D SDs by 1.5 and 4 mm, respectively. The application of high-resolution tropospheric model also shortens the convergence time, for example, for a 10 cm convergence level, from 67 to 58 min for the horizontal components and from 79 to 63 min for the vertical component. Numéro de notice : A2017-444 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-017-0617-6 En ligne : https://doi.org/10.1007/s10291-017-0617-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86368
in GPS solutions > vol 21 n° 3 (July 2017) . - pp 1341 – 1353[article]Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data / Karina Wilgan in Journal of geodesy, vol 91 n° 2 (February 2017)
[article]
Titre : Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data Type de document : Article/Communication Auteurs : Karina Wilgan, Auteur ; Fabian Peter Hurter, Auteur ; Alain Geiger, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 117 - 134 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] collocation par moindres carrés
[Termes IGN] données GNSS
[Termes IGN] données météorologiques
[Termes IGN] modèle atmosphérique
[Termes IGN] prévision météorologique
[Termes IGN] propagation troposphérique
[Termes IGN] réfringence
[Termes IGN] retard troposphérique zénithalRésumé : (Auteur) Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations. Numéro de notice : A2017-062 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0942-5 En ligne : http://dx.doi.org/10.1007/s00190-016-0942-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84275
in Journal of geodesy > vol 91 n° 2 (February 2017) . - pp 117 - 134[article]