Détail de l'auteur
Auteur Liansheng Deng |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
GPS-derived geocenter motion from the IGS second reprocessing campaign / Liansheng Deng in Earth, Planets and Space, vol 71 (2019)
[article]
Titre : GPS-derived geocenter motion from the IGS second reprocessing campaign Type de document : Article/Communication Auteurs : Liansheng Deng, Auteur ; Zhao Li, Auteur ; Na Wei, Auteur ; Yifang Ma , Auteur ; Hua Chen, Auteur Année de publication : 2019 Article en page(s) : n° 74 Note générale : bibloigraphie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] campagne d'observations
[Termes IGN] mouvement du géocentre
[Termes IGN] télémétrie laser sur satelliteRésumé : (auteur) GPS data processing methods and theories are under continuous refinement in the past 30 years. Using the latest products is supposed to provide more stable and reliable geocenter estimates. In this paper, geocenter estimates from deformation inversion approach with new observations of IGS second data reprocessing campaign (IG2) are investigated. Results indicate that our IG2-derived geocenter motion estimates agree well with solutions from network approach for SLR. The truncated degree 5 exhibits the highest consistency between GPS-inverted geocenter estimates and the SLR results in both annual amplitudes and phases. Then, the GPS-derived geocenter motions are compared with results from other different approaches. We find that except for a discrepancy in the annual phase estimates of Z component, geocenter motions predicted with the IG2 data are in line with those based on other techniques. In addition, the effects of the translational parameters and the comparison with the IGS first data reprocessing campaign (IG1)-estimated geocenter motions are investigated, and results demonstrate that the translation parameters should be estimated when inversing the geocenter motion with the newly IG2 solutions and the advantage of the IG2 data reprocessing over the previous IG1 efforts. Finally, we address the impacts of post-seismic effects and the missing ocean data on the IG2-derived solutions. After removing the stations affected by large earthquakes, the amplitudes of Y component become higher, but the annual phases of the Y component become far away from the SLR solutions. Comparisons of the equivalent water height from the IG2-estimated coefficients and the solutions from the estimation of the circulation and climate of the ocean indicate that the differences between the two types of solutions vary with different truncated degrees, and the consistency is getting worse and worse with the truncated degree grows. Further researches still need to be done to invert surface mass variation coefficients from various combinations of GPS observations, ocean models and other datasets. Numéro de notice : A2019-669 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s40623-019-1054-2 Date de publication en ligne : 05/07/2019 En ligne : https://doi.org/10.1186/s40623-019-1054-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99940
in Earth, Planets and Space > vol 71 (2019) . - n° 74[article]Study of the effects on GPS coordinate time series caused by higher-order ionospheric corrections calculated using the DIPOLE model / Liansheng Deng in Geodesy and Geodynamics, vol 8 n° 2 (March 2017)
[article]
Titre : Study of the effects on GPS coordinate time series caused by higher-order ionospheric corrections calculated using the DIPOLE model Type de document : Article/Communication Auteurs : Liansheng Deng, Auteur ; Weiping Jiang, Auteur ; Hua Chen, Auteur ; Zhaohan Zhu, Auteur ; Wen Zhao, Auteur Année de publication : 2017 Article en page(s) : pp 111 - 119 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] amplitude
[Termes IGN] bruit blanc
[Termes IGN] bruit rose
[Termes IGN] champ géomagnétique
[Termes IGN] correction ionosphérique
[Termes IGN] GAMIT
[Termes IGN] GLOBK
[Termes IGN] série temporelle
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) As one of the main error sources in high-precision Global Positioning System (GPS) data processing, higher-order ionospheric (HOI) delays cause significant effects on coordinate time series that cannot be ignored in analyses of long time series. Typically two geomagnetic models, DIPOLE model and International Geomagnetic Reference Field (IGRF) model, are used for calculating HOI corrections. This paper investigates the effects of HOI correction caused by the DIPOLE model on coordinate time series. GPS data from 104 globally distributed International GNSS Service (IGS) stations spanning from January, 1999 to December, 2003 were reprocessed following up-to-date processing strategies utilizing GAMIT and GLOBK software. Two coordinate time series solutions before and after applying HOI corrections using the DIPOLE model were derived for studying the effects in terms of seasonal variations and noise amplitudes. The results show that after applying the HOI corrections calculated with DIPOLE, the noise amplitudes of the coordinate time series increased, especially in the north and east directions, and the increased amplitudes of the flicker noise were larger than those of the white noise. Furthermore, spurious periodic signals that were probably introduced by the HOI corrections from the DIPOLE model were also found. Moreover, an apparent increase was confirmed for the power spectra of most of the stations, especially in the north direction, and the amplitudes of both the annual and semi-annual signals also increased in the north and east directions. It can be inferred that the quality of the external data sources such as the geomagnetic model might be the key factors that lead to the above results. The results also suggest that we should be very careful when the DIPOLE model is used for HOI corrections. Numéro de notice : A2017-235 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.geog.2017.01.004 En ligne : https://doi.org/10.1016/j.geog.2017.01.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85167
in Geodesy and Geodynamics > vol 8 n° 2 (March 2017) . - pp 111 - 119[article]Assessment of second- and third-order ionospheric effects on regional networks : case study in China with longer CMONOC GPS coordinate time series / Liansheng Deng in Journal of geodesy, vol 91 n° 2 (February 2017)
[article]
Titre : Assessment of second- and third-order ionospheric effects on regional networks : case study in China with longer CMONOC GPS coordinate time series Type de document : Article/Communication Auteurs : Liansheng Deng, Auteur ; Weiping Jiang, Auteur ; Zhao Li, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 207 - 227 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] analyse diachronique
[Termes IGN] Chine
[Termes IGN] coordonnées GPS
[Termes IGN] correction ionosphérique
[Termes IGN] déformation de la croute terrestre
[Termes IGN] effet atmosphérique
[Termes IGN] propagation ionosphérique
[Termes IGN] réseau géodésique local
[Termes IGN] retard ionosphèrique
[Termes IGN] série temporelle
[Termes IGN] surcharge atmosphériqueRésumé : (Auteur) Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China’s (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks. Numéro de notice : A2017-064 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-016-0957-y En ligne : http://dx.doi.org/10.1007/s00190-016-0957-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84278
in Journal of geodesy > vol 91 n° 2 (February 2017) . - pp 207 - 227[article]