Détail de l'auteur
Auteur Teng Liu |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Estimation of code observation-specific biases (OSBs) for the modernized multi-frequency and multi-GNSS signals: an undifferenced and uncombined approach / Teng Liu in Journal of geodesy, vol 95 n° 8 (August 2021)
[article]
Titre : Estimation of code observation-specific biases (OSBs) for the modernized multi-frequency and multi-GNSS signals: an undifferenced and uncombined approach Type de document : Article/Communication Auteurs : Teng Liu, Auteur ; Baocheng Zhang, Auteur Année de publication : 2021 Article en page(s) : n° 97 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] code GNSS
[Termes IGN] combinaison linéaire
[Termes IGN] erreur systématique de code différentiel
[Termes IGN] fréquence multiple
[Termes IGN] phase GNSS
[Termes IGN] retard ionosphèrique
[Termes IGN] signal GNSS
[Termes IGN] teneur verticale totale en électrons
[Vedettes matières IGN] Traitement de données GNSSRésumé : (auteur) For a long time, code biases of global navigation satellite system (GNSSs) have been parameterized and presented in the differential mode, namely the commonly-known differential code biases (DCB). However, with the continuous modernization of the existing constellations and rapid developments of the new systems, various new frequencies and types of GNSS signals are emerging, which makes the traditional DCB mode less flexible and efficient to handle the new situations and challenges. Recently, code biases in observation-specific representation, which finally provides observation-specific biases (OSBs), turns out to be a good solution and is gradually accepted by the GNSS community, though existing products are generated based on routine procedures and few studies concentrate on the new methods. In view of it, this study aims to propose a rigorous, flexible and efficient approach of OSB estimation for the modernized multi-frequency and, multi-GNSS signals. To achieve this, instead of being-based on linear combinations of raw observations in the existing literature, an extended multi-frequency geometry-free model is first established based on undifferenced and uncombined observations, which can adapt to observations of arbitrary frequencies and types in a compatible and flexible way and is used to extract the various types of linear combinations of the interested OSBs. Then, regarding the previously-obtained linear combinations as virtual observables after station-based ionosphere modeling, all OSB parameters are setup and estimated in a single normal equation, during which a clear identification and elimination of the rank deficiencies in the linear system is carefully conducted by introducing different types of constraints. The proposed new method is validated with one month of real data to generate totally 32 types of OSBs for GPS, GLONASS, Galileo, BeiDou, and QZSS. The estimated OSBs are compared with existing OSB and DCB products from other agencies. Results indicate that the proposed method can be used as a flexible and precise method for full-constellation and full-type OSB estimation. Numéro de notice : A2021-584 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01549-x Date de publication en ligne : 12/08/2021 En ligne : https://doi.org/10.1007/s00190-021-01549-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98199
in Journal of geodesy > vol 95 n° 8 (August 2021) . - n° 97[article]Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK / Baocheng Zhang in Journal of geodesy, vol 95 n° 8 (August 2021)
[article]
Titre : Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Pengyu Hou, Auteur ; Jiuping Zha, Auteur ; Teng Liu, Auteur Année de publication : 2021 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] correction ionosphérique
[Termes IGN] décalage d'horloge
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] temps de convergenceRésumé : (auteur) PPP-RTK extends the precise point positioning (PPP) concept by incorporating the idea of integer ambiguity resolution underlying the real-time kinematic (RTK) technique, making rapid initialization and high accuracy attainable with a standalone receiver. While PPP-RTK has been well achieved by using global navigation satellite system code division multiple access observables, GLONASS PPP-RTK is nonetheless challenging due to the nature of frequency division multiple access (FDMA) observables. In this work, we present a GLONASS PPP-RTK concept that takes advantage of the integer-estimable FDMA (IE-FDMA) model recently proposed in Teunissen (in GPS Solut 23(4):1–19, 2019. https://doi.org/10.1007/s10291-019-0889-0) to guarantee rigorous integer ambiguity resolution and simultaneously takes care of the presence of the inter-frequency biases (IFBs) in homogeneous and heterogeneous network configurations. When conducting GLONASS PPP-RTK based on a network of homogeneous receivers, code and phase observation equations are used to construct the IE-FDMA model, in which the IFBs are implicitly eliminated through reparameterization. For a network consisting of heterogeneous receivers, we exclude the code observables and develop a phase-only IE-FDMA model instead, thereby circumventing the adverse effects of IFBs. For verification purposes, we collect a set of five-day global positioning system (GPS) and GLONASS data from two regional networks: one equipped with homogeneous receivers and another with heterogeneous receivers. The results show that the GLONASS-specific network corrections, including satellite clocks, satellite phase biases, and ionospheric delays estimated by the two networks, are as precise as those of their GPS-specific counterparts. Via satellite clock and phase bias corrections, we succeed in fixing both GPS and GLONASS ambiguities, shortening the convergence time to 5 (12) min, compared to 11 (18) min of ambiguity-float positioning in the case of a homogeneous (heterogeneous) network with a data sampling rate of 30 s. For ambiguity-fixed positioning, the convergence time defined in this work also indicates the time to first fix since the positioning error converges to the centimeter level once successful integer ambiguity resolution is achieved. Adding ionospheric corrections further speeds up the initialization in the two networks, with the convergence time being reduced to 0.5 (3) min. Compared with GPS-only positioning, the integration of GPS and GLONASS yields an improvement of 8–34% in accuracy and leads to a reduction of 25–50% in convergence. Numéro de notice : A2021-585 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01546-0 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1007/s00190-021-01546-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98200
in Journal of geodesy > vol 95 n° 8 (August 2021) . - n° 91[article]Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning / Pengyu Hou in GPS solutions, Vol 24 n° 4 (October 2020)
[article]
Titre : Integer-estimable GLONASS FDMA model as applied to Kalman-filter-based short- to long-baseline RTK positioning Type de document : Article/Communication Auteurs : Pengyu Hou, Auteur ; Baocheng Zhang, Auteur ; Teng Liu, Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] compensation Lambda
[Termes IGN] données GLONASS
[Termes IGN] données GPS
[Termes IGN] filtre de Kalman
[Termes IGN] ionosphère
[Termes IGN] ligne de base
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GLONASS
[Termes IGN] résolution d'ambiguïté
[Termes IGN] signal GLONASSRésumé : (auteur) Fast ambiguity resolution is a major challenge for GLONASS phase-based applications. The integer-estimable frequency-division multiple-access (IE-FDMA) model succeeds in formulating a set of estimable GLONASS phase ambiguities and preserving the integer property, to which the classical integer ambiguity resolution, typically the least-squares ambiguity decorrelation adjustment (LAMBDA), becomes readily applicable. The initial assessment of the IE-FDMA model demonstrated instantaneous ambiguity resolution capability in case of short-baseline real-time kinematic (RTK) positioning based on ionosphere-fixed formulation, in which the data processing strategy is window (batch)-based least-squares estimation with window length ranging from one to a few epochs. Here, we extend the applicability of the IE-FDMA model to Kalman-filter-based, ionosphere-fixed, ionosphere-weighted, and ionosphere-free cases, which are, respectively, adoptable for short-, medium-, and long-baseline RTK positioning. To adapt the IE-FDMA model to the Kalman filter, we estimate, at each epoch, first the estimable ambiguities, then transform them into integer-estimable ones, and finally resolve them into correct integers. This enables the rigorous integer ambiguity resolution and, at the same time, eases the recursive construction of integer-estimable ambiguities. We analyze global positioning system (GPS) and GLONASS data of nine baselines with lengths varying from several meters to more than one hundred kilometers. The results demonstrate the feasibility of fast ambiguity resolution not only for the GLONASS phase-only short-baseline RTK positioning, but for the GPS + GLONASS medium- and long-baseline RTK positioning as well. In all cases, the fixed solution with faster (several-minutes) convergence and higher (centimeter-level) precision indicates the benefits from GLONASS ambiguity resolution as compared to the float solution. Moreover, the dual-system solution with decreased ambiguity dilution of precision (ADOP) and improved positioning precision confirms the advantages of integrating GLONASS with GPS in contrast to the GPS-only situation. Numéro de notice : A2020-524 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01008-8 Date de publication en ligne : 11/07/2020 En ligne : https://doi.org/10.1007/s10291-020-01008-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95699
in GPS solutions > Vol 24 n° 4 (October 2020) . - 14 p.[article]A single-receiver geometry-free approach to stochastic modeling of multi-frequency GNSS observables / Baocheng Zhang in Journal of geodesy, vol 94 n°4 (April 2020)
[article]
Titre : A single-receiver geometry-free approach to stochastic modeling of multi-frequency GNSS observables Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Pengyu Hou, Auteur ; Teng Liu, Auteur ; Yunbin Yuan, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] analyse de variance
[Termes IGN] corrélation croisée normalisée
[Termes IGN] corrélation temporelle
[Termes IGN] fréquence multiple
[Termes IGN] méthode des moindres carrés
[Termes IGN] méthode robuste
[Termes IGN] modèle stochastique
[Termes IGN] positionnement ponctuel précis
[Termes IGN] récepteur
[Termes IGN] traitement de données GNSS
[Termes IGN] trajet multipleRésumé : (auteur) The proper choice of stochastic model is of great importance to global navigation satellite system (GNSS) data processing. Whereas extensive investigations into stochastic modeling are mainly based on the relative (or differential) method employing zero and/or short baselines, this work proposes an absolute method that relies upon a stand-alone receiver and works by applying the least-squares variance component estimation to the geometry-free functional model, thus facilitating the characterization of stochastic properties of multi-frequency GNSS observables at the undifferenced level. In developing the absolute method, special care has been taken of the code multipath effects by introducing ambiguity-like parameters to the code observation equations. By means of both the relative and absolute methods, we characterize the precision, cross and time correlation of the code and phase observables of two newly emerging constellations, namely the Chinese BDS and the European Galileo, collected by a variety of receivers of different types at multiple frequencies. Our first finding is that so far as the precision is concerned, the absolute method yields nearly the same numerical values as those derived by the zero-baseline-based relative method. However, the two methods give contradictory results with regard to the cross correlation, which is found (not) to occur between BDS phase observables when use has been made of the relative (absolute) method. Our explanation to this discrepancy is that the cross correlation found in the relative method originates from the parts (antenna, cable, low noise amplifier) shared by two receivers creating a zero baseline. The time correlation is only of significance when the multipath effects are present, as is the case with the short-baseline-based relative method; this correlation turns out to be largely weaker (or ideally absent) in the absolute (or zero-baseline-based relative) method. Moreover, with the absolute method, the stochastic properties determined for two receivers of the same type but subject to different multipath effects are virtually the same. We take this as a convincing evidence that the absolute method is robust against multipath effects. Hence, the absolute method proposed in the present work represents a promising complement to the relative method and appears to be particularly beneficial to GNSS positioning, navigation and timing technologies based on the undifferenced observables, typically the precise point positioning. Numéro de notice : A2020-160 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01366-8 Date de publication en ligne : 09/03/2020 En ligne : https://doi.org/10.1007/s00190-020-01366-8 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94817
in Journal of geodesy > vol 94 n°4 (April 2020)[article]Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling / Teng Liu in Journal of geodesy, vol 92 n° 11 (November 2018)
[article]
Titre : Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling Type de document : Article/Communication Auteurs : Teng Liu, Auteur ; Baocheng Zhang, Auteur ; Yunbin Yuan, Auteur ; Min Li, Auteur Année de publication : 2018 Article en page(s) : pp 1267 - 1283 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] modèle ionosphérique
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèrique
[Termes IGN] temps réel
[Termes IGN] teneur verticale totale en électronsRésumé : (Auteur) Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling. Numéro de notice : A2018-463 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-018-1118-2 Date de publication en ligne : 29/01/2018 En ligne : https://doi.org/10.1007/s00190-018-1118-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91062
in Journal of geodesy > vol 92 n° 11 (November 2018) . - pp 1267 - 1283[article]GPS receiver phase biases estimable in PPP-RTK networks : dynamic characterization and impact analysis / Baocheng Zhang in Journal of geodesy, vol 92 n° 6 (June 2018)PermalinkMulti-GNSS precise point positioning (MGPPP) using raw observations / Teng Liu in Journal of geodesy, vol 91 n° 3 (March 2017)Permalink