Détail de l'auteur
Auteur Xiaobing Han |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatial-spectral unsupervised convolutional sparse auto-encoder classifier for hyperspectral imagery / Xiaobing Han in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 3 (March 2017)
[article]
Titre : Spatial-spectral unsupervised convolutional sparse auto-encoder classifier for hyperspectral imagery Type de document : Article/Communication Auteurs : Xiaobing Han, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 195 - 206 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classificateur non paramétrique
[Termes IGN] cohérence (physique)
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectraleRésumé : (Auteur) The traditional spatial-spectral classification methods applied to hyperspectral remote sensing imagery are conducted by combining the spatial information vector and the spectral information vector in a separate manner, which may cause information loss and concatenation deficiency between the spatial and spectral information. In addition, the traditional morphological-based spatial-spectral classification methods require the design of handcrafted features according to experience, which is far from automatic and lacks generalization ability. To automatically represent the spatial-spectral features around the central pixel within a spatial neighborhood window, a novel spatial-spectral feature classification method based on the unsupervised convolutional sparse auto-encoder (UCSAE) with a window-in-window strategy is proposed in this study. The UCSAE algorithm features a unique spatial-spectral feature extraction approach which is executed in two stages. The first stage represents the spatial-spectral features within a spatial neighborhood window on the basis of spatial-spectral feature extraction of sub-windows with a sparse auto-encoder (SAE). The second stage exploits the spatial-spectral feature representation with a convolution mechanism for the larger outer windows. The UCSAE algorithm was validated by two widely used hyperspectral imagery datasets (the Pavia University dataset and the Washington DC Mall dataset) obtaining accuracies of 90.03 percent and 96.88 percent, respectively, which are better results than those obtained by the traditional hyperspectral spatial-spectral classification approaches. Numéro de notice : A2017-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.3.195 En ligne : https://doi.org/10.14358/PERS.83.3.195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84423
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 3 (March 2017) . - pp 195 - 206[article]