Détail de l'auteur
Auteur Thomas C. Harmon |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised object-based differencing for land-cover change detection / Jinxia Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 3 (March 2017)
[article]
Titre : Unsupervised object-based differencing for land-cover change detection Type de document : Article/Communication Auteurs : Jinxia Zhu, Auteur ; Yanjun Su, Auteur ; Qinghua Guo, Auteur ; Thomas C. Harmon, Auteur Année de publication : 2017 Article en page(s) : pp 225 - 236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] altération
[Termes IGN] autocorrélation
[Termes IGN] changement d'occupation du sol
[Termes IGN] Chine
[Termes IGN] classification non dirigée
[Termes IGN] classification orientée objet
[Termes IGN] détection de changement
[Termes IGN] image multitemporelle
[Termes IGN] image SPOT-HRV
[Termes IGN] occupation du sol
[Termes IGN] traitement d'imageRésumé : (Auteur) One main problem of the spectral decomposition-based change detection method is the lack of efficient automatic techniques for developing the difference image. Traditional techniques generally assume that gray-level values in a difference image are independent and multitemporal images are co-registered/rectified perfectly without error. However, such assumptions are often violated because of the inevitable image misregistration and the interference of correlations between spectral bands. This study proposes an automated method based on the object-based multivariate alteration detection/maximum autocorrelation factor approach and the Gaussian mixture model-expectation maximization algorithm to obtain unsupervised difference images. This procedure is applied to bi-temporal (2005 and 2006) SPOT-HRV images at Panyu District Ponds, China. Results show that the proposed method successfully excludes the correlations of spectral bands and the influence of misregistration, as evidenced by a higher accuracy (up to 93.6 percent). These unique technical characteristics make this analytical framework suitable for detecting changes. Numéro de notice : A2017-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.3.225 En ligne : https://doi.org/10.14358/PERS.83.3.225 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84424
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 3 (March 2017) . - pp 225 - 236[article]