Détail de l'auteur
Auteur Seonyoung Park |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration / Yinghai Ke in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
[article]
Titre : Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration Type de document : Article/Communication Auteurs : Yinghai Ke, Auteur ; Jungho Im, Auteur ; Seonyoung Park, Auteur ; Huili Gong, Auteur Année de publication : 2017 Article en page(s) : pp 79 – 93 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] évapotranspiration
[Termes IGN] image à haute résolution
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] réflectance de surface
[Termes IGN] ressources en eau
[Termes IGN] température au solRésumé : (auteur) Continuous monitoring of actual evapotranspiration (ET) is critical for water resources management at both regional and local scales. Although the MODIS ET product (MOD16A2) provides viable sources for ET monitoring at 8-day intervals, the spatial resolution (1 km) is too coarse for local scale applications. In this study, we propose a machine learning and spatial temporal fusion (STF)-integrated approach in order to generate 8-day 30 m ET based on both MOD16A2 and Landsat 8 data with three schemes. Random forest machine learning was used to downscale MODIS 1 km ET to 30 m resolution based on nine Landsat-derived indicators including vegetation indices (VIs) and land surface temperature (LST). STF-based models including Spatial and Temporal Adaptive Reflectance Fusion Model and Spatio-Temporal Image Fusion Model were used to derive synthetic Landsat surface reflectance (scheme 1)/VIs (scheme 2)/ET (scheme 3) on Landsat-unavailable dates. The approach was tested over two study sites in the United States. The results showed that fusion of Landsat VIs produced the best accuracy of predicted ET (R2 = 0.52–0.97, RMSE = 0.47–3.0 mm/8 days and rRMSE = 6.4–37%). High density of cloud-clear Landsat image acquisitions and low spatial heterogeneity of Landsat VIs benefit the ET prediction. The downscaled 30 m ET had good agreement with MODIS ET (RMSE = 0.42–3.4 mm/8 days, rRMSE = 3.2–26%). Comparison with the in situ ET measurements showed that the downscaled ET had higher accuracy than MODIS ET. Numéro de notice : A2017-114 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.02.006 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2017.02.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84509
in ISPRS Journal of photogrammetry and remote sensing > vol 126 (April 2017) . - pp 79 – 93[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt