Détail de l'auteur
Auteur André Dittrich |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Analytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data / André Dittrich in ISPRS Journal of photogrammetry and remote sensing, vol 126 (April 2017)
[article]
Titre : Analytical and numerical investigations on the accuracy and robustness of geometric features extracted from 3D point cloud data Type de document : Article/Communication Auteurs : André Dittrich, Auteur ; Martin Weinmann, Auteur ; Stefan Hinz, Auteur Année de publication : 2017 Article en page(s) : pp 195 – 208 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bruit (théorie du signal)
[Termes IGN] calcul tensoriel
[Termes IGN] discrétisation
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] lasergrammétrie
[Termes IGN] méthode robuste
[Termes IGN] restitution lasergrammétrique
[Termes IGN] semis de points
[Termes IGN] valeur propreRésumé : (auteur) In photogrammetry, remote sensing, computer vision and robotics, a topic of major interest is represented by the automatic analysis of 3D point cloud data. This task often relies on the use of geometric features amongst which particularly the ones derived from the eigenvalues of the 3D structure tensor (e.g. the three dimensionality features of linearity, planarity and sphericity) have proven to be descriptive and are therefore commonly involved for classification tasks. Although these geometric features are meanwhile considered as standard, very little attention has been paid to their accuracy and robustness. In this paper, we hence focus on the influence of discretization and noise on the most commonly used geometric features. More specifically, we investigate the accuracy and robustness of the eigenvalues of the 3D structure tensor and also of the features derived from these eigenvalues. Thereby, we provide both analytical and numerical considerations which clearly reveal that certain features are more susceptible to discretization and noise whereas others are more robust. Numéro de notice : A2017-117 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.02.012 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2017.02.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84512
in ISPRS Journal of photogrammetry and remote sensing > vol 126 (April 2017) . - pp 195 – 208[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt